-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
89 lines (74 loc) · 3.02 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from peft import PeftConfig
from peft import get_peft_model
from peft.utils import (
prepare_model_for_kbit_training,
)
import torch
from trl.trainer.utils import peft_module_casting_to_bf16
import inspect
from typing import Dict
def prepare_peft(
model: torch.nn.Module,
peft_config: PeftConfig,
bf16: bool = False,
gradient_checkpointing: bool = False,
gradient_checkpointing_kwargs: Dict = {},
autocast_adapter_dtype: bool = True,
):
_support_gc_kwargs = len(
gradient_checkpointing_kwargs
) > 0 and "gradient_checkpointing_kwargs" in list(
inspect.signature(prepare_model_for_kbit_training).parameters
)
is_sharded_qlora = False
# Below is to support QLoRA + FSDP / DS-Zero3 - one should never call
# peft_module_casting_to_bf16 or prepare_model_for_kbit_training when doing
# QLoRA + FSDP / DS-Zero3
if getattr(model, "is_loaded_in_4bit", False):
for _, param in model.named_parameters():
if param.__class__.__name__ == "Params4bit":
is_sharded_qlora = param.data.device.type == "cpu"
break
if getattr(model, "is_loaded_in_8bit", False) or (
getattr(model, "is_loaded_in_4bit", False) and not is_sharded_qlora
):
prepare_model_kwargs = {
"use_gradient_checkpointing": gradient_checkpointing,
}
if _support_gc_kwargs:
prepare_model_kwargs["gradient_checkpointing_kwargs"] = gradient_checkpointing_kwargs
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
# if args is not None:
# args = dataclasses.replace(args, gradient_checkpointing=False)
elif gradient_checkpointing and (
"use_reentrant" not in gradient_checkpointing_kwargs
or gradient_checkpointing_kwargs["use_reentrant"]
):
# For backward compatibility with older versions of transformers
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# if (
# "autocast_adapter_dtype" in list(inspect.signature(get_peft_model).parameters)
# and getattr(model, "is_loaded_in_4bit", False)
# and is_sharded_qlora
# ):
# model = get_peft_model(model, peft_config, autocast_adapter_dtype=False)
# else:
# model = get_peft_model(model, peft_config, autocast_adapter_dtype=False)
model = get_peft_model(model, peft_config, autocast_adapter_dtype=autocast_adapter_dtype)
if (
bf16
and getattr(model, "is_loaded_in_4bit", False)
and not is_sharded_qlora
):
peft_module_casting_to_bf16(model)
# add some more extra logic to cast to bf16
if bf16:
for name, p in model.named_parameters():
if "lora_" in name:
p.data = p.data.to(torch.bfloat16)
return model