-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfix_fft.cpp
298 lines (282 loc) · 11.5 KB
/
fix_fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include "fix_fft.h"
/* fix_fft.c - Fixed-point in-place Fast Fourier Transform */
/*
All data are fixed-point int integers, in which -32768
to +32768 represent -1.0 to +1.0 respectively. Integer
arithmetic is used for speed, instead of the more natural
floating-point.
For the forward FFT (time -> freq), fixed scaling is
performed to prevent arithmetic overflow, and to map a 0dB
sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq
coefficients. The return value is always 0.
For the inverse FFT (freq -> time), fixed scaling cannot be
done, as two 0dB coefficients would sum to a peak amplitude
of 64K, overflowing the 32k range of the fixed-point integers.
Thus, the fix_fft() routine performs variable scaling, and
returns a value which is the number of bits LEFT by which
the output must be shifted to get the actual amplitude
(i.e. if fix_fft() returns 3, each value of fr[] and fi[]
must be multiplied by 8 (2**3) for proper scaling.
Clearly, this cannot be done within fixed-point int
integers. In practice, if the result is to be used as a
filter, the scale_shift can usually be ignored, as the
result will be approximately correctly normalized as is.
Written by: Tom Roberts 11/8/89
Made portable: Malcolm Slaney 12/15/94 [email protected]
Enhanced: Dimitrios P. Bouras 14 Jun 2006 [email protected]
*/
#define N_WAVE 1024 /* full length of Sinewave[] */
#define LOG2_N_WAVE 10 /* log2(N_WAVE) */
/*
Henceforth "int" implies 16-bit word. If this is not
the case in your architecture, please replace "int"
with a type definition which *is* a 16-bit word.
*/
/*
Since we only use 3/4 of N_WAVE, we define only
this many samples, in order to conserve data space.
*/
const int Sinewave[N_WAVE-N_WAVE/4] = {
0, 201, 402, 603, 804, 1005, 1206, 1406,
1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
30851, 30918, 30984, 31049, 31113, 31175, 31236, 31297,
31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
1607, 1406, 1206, 1005, 804, 603, 402, 201,
0, -201, -402, -603, -804, -1005, -1206, -1406,
-1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
-3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
-4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
-6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
-7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
-9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
-11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
-12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
-14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
-15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
-16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
-18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
-19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
-20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
-22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
-23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
-24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
-25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
-26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
-27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
-28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
-28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
-29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
-30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
-30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
-31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
-31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
-32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
-32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
-32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
-32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
};
/*
FIX_MPY() - fixed-point multiplication & scaling.
Substitute inline assembly for hardware-specific
optimization suited to a particluar DSP processor.
Scaling ensures that result remains 16-bit.
*/
inline int FIX_MPY(int a, int b)
{
/* shift right one less bit (i.e. 15-1) */
int c = ((int)a * (int)b) >> 14;
/* last bit shifted out = rounding-bit */
b = c & 0x01;
/* last shift + rounding bit */
a = (c >> 1) + b;
return a;
}
/*
fix_fft() - perform forward/inverse fast Fourier transform.
fr[n],fi[n] are real and imaginary arrays, both INPUT AND
RESULT (in-place FFT), with 0 <= n < 2**m; set inverse to
0 for forward transform (FFT), or 1 for iFFT.
*/
int fix_fft(int fr[], int fi[], int m, int inverse)
{
int mr, nn, i, j, l, k, istep, n, scale, shift;
int qr, qi, tr, ti, wr, wi;
n = 1 << m;
/* max FFT size = N_WAVE */
if (n > N_WAVE)
return -1;
mr = 0;
nn = n - 1;
scale = 0;
/* decimation in time - re-order data */
for (m=1; m<=nn; ++m) {
l = n;
do {
l >>= 1;
} while (mr+l > nn);
mr = (mr & (l-1)) + l;
if (mr <= m)
continue;
tr = fr[m];
fr[m] = fr[mr];
fr[mr] = tr;
ti = fi[m];
fi[m] = fi[mr];
fi[mr] = ti;
}
l = 1;
k = LOG2_N_WAVE-1;
while (l < n) {
if (inverse) {
/* variable scaling, depending upon data */
shift = 0;
for (i=0; i<n; ++i) {
j = fr[i];
if (j < 0)
j = -j;
m = fi[i];
if (m < 0)
m = -m;
if (j > 16383 || m > 16383) {
shift = 1;
break;
}
}
if (shift)
++scale;
}
else {
/*
fixed scaling, for proper normalization --
there will be log2(n) passes, so this results
in an overall factor of 1/n, distributed to
maximize arithmetic accuracy.
*/
shift = 1;
}
/*
it may not be obvious, but the shift will be
performed on each data point exactly once,
during this pass.
*/
istep = l << 1;
for (m=0; m<l; ++m) {
j = m << k;
/* 0 <= j < N_WAVE/2 */
wr = Sinewave[j+N_WAVE/4];
wi = -Sinewave[j];
if (inverse)
wi = -wi;
if (shift) {
wr >>= 1;
wi >>= 1;
}
for (i=m; i<n; i+=istep) {
j = i + l;
tr = FIX_MPY(wr,fr[j]) - FIX_MPY(wi,fi[j]);
ti = FIX_MPY(wr,fi[j]) + FIX_MPY(wi,fr[j]);
qr = fr[i];
qi = fi[i];
if (shift) {
qr >>= 1;
qi >>= 1;
}
fr[j] = qr - tr;
fi[j] = qi - ti;
fr[i] = qr + tr;
fi[i] = qi + ti;
}
}
--k;
l = istep;
}
return scale;
}
/*
fix_fftr() - forward/inverse FFT on array of real numbers.
Real FFT/iFFT using half-size complex FFT by distributing
even/odd samples into real/imaginary arrays respectively.
In order to save data space (i.e. to avoid two arrays, one
for real, one for imaginary samples), we proceed in the
following two steps: a) samples are rearranged in the real
array so that all even samples are in places 0-(N/2-1) and
all imaginary samples in places (N/2)-(N-1), and b) fix_fft
is called with fr and fi pointing to index 0 and index N/2
respectively in the original array. The above guarantees
that fix_fft "sees" consecutive real samples as alternating
real and imaginary samples in the complex array.
*/
int fix_fftr(int f[], int m, int inverse)
{
int i, n = 1<<(m-1), scale = 0;
int tt, *fr=f, *fi=&f[nPts];
if (inverse)
scale = fix_fft(fi, fr, m-1, inverse);
for (i=1; i<nPts; i+=2) {
tt = f[n+i-1];
f[n+i-1] = f[i];
f[i] = tt;
}
if (! inverse)
scale = fix_fft(fi, fr, m-1, inverse);
return scale;
}