forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_model.py
215 lines (182 loc) · 7.46 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
import ppdet.utils.checkpoint as checkpoint
from ppdet.utils.check import check_config, check_version
import yaml
import logging
from collections import OrderedDict
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def parse_reader(reader_cfg, metric, arch):
preprocess_list = []
image_shape = reader_cfg['inputs_def'].get('image_shape', [3, None, None])
has_shape_def = not None in image_shape
scale_set = {'RCNN', 'RetinaNet'}
dataset = reader_cfg['dataset']
anno_file = dataset.get_anno()
with_background = dataset.with_background
use_default_label = dataset.use_default_label
if metric == 'COCO':
from ppdet.utils.coco_eval import get_category_info
elif metric == "VOC":
from ppdet.utils.voc_eval import get_category_info
elif metric == "WIDERFACE":
from ppdet.utils.widerface_eval_utils import get_category_info
else:
raise ValueError(
"metric only supports COCO, VOC, WIDERFACE, but received {}".format(
metric))
clsid2catid, catid2name = get_category_info(anno_file, with_background,
use_default_label)
label_list = [str(cat) for cat in catid2name.values()]
sample_transforms = reader_cfg['sample_transforms']
for st in sample_transforms[1:]:
method = st.__class__.__name__
p = {'type': method.replace('Image', '')}
params = st.__dict__
params.pop('_id')
if p['type'] == 'Resize' and has_shape_def:
params['target_size'] = min(image_shape[
1:]) if arch in scale_set else image_shape[1]
params['max_size'] = max(image_shape[
1:]) if arch in scale_set else 0
params['image_shape'] = image_shape[1:]
p.update(params)
preprocess_list.append(p)
batch_transforms = reader_cfg.get('batch_transforms', None)
if batch_transforms:
methods = [bt.__class__.__name__ for bt in batch_transforms]
for bt in batch_transforms:
method = bt.__class__.__name__
if method == 'PadBatch':
preprocess_list.append({'type': 'PadStride'})
params = bt.__dict__
preprocess_list[-1].update({'stride': params['pad_to_stride']})
break
return with_background, preprocess_list, label_list
def dump_infer_config(FLAGS, config):
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(FLAGS.output_dir, cfg_name)
from ppdet.core.config.yaml_helpers import setup_orderdict
setup_orderdict()
infer_cfg = OrderedDict({
'use_python_inference': False,
'mode': 'fluid',
'draw_threshold': 0.5,
'metric': config['metric']
})
trt_min_subgraph = {
'YOLO': 3,
'SSD': 3,
'RCNN': 40,
'RetinaNet': 40,
'Face': 3,
}
infer_arch = config['architecture']
for arch, min_subgraph_size in trt_min_subgraph.items():
if arch in infer_arch:
infer_cfg['arch'] = arch
infer_cfg['min_subgraph_size'] = min_subgraph_size
break
if 'Mask' in config['architecture']:
infer_cfg['mask_resolution'] = config['MaskHead']['resolution']
infer_cfg['with_background'], infer_cfg['Preprocess'], infer_cfg[
'label_list'] = parse_reader(config['TestReader'], config['metric'],
infer_cfg['arch'])
yaml.dump(infer_cfg, open(os.path.join(save_dir, 'infer_cfg.yml'), 'w'))
logger.info("Export inference config file to {}".format(
os.path.join(save_dir, 'infer_cfg.yml')))
def prune_feed_vars(feeded_var_names, target_vars, prog):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names = []
prog = prog.clone()
prog = prog._prune(targets=target_vars)
global_block = prog.global_block()
for name in feeded_var_names:
try:
v = global_block.var(name)
exist_var_names.append(str(v.name))
except Exception:
logger.info('save_inference_model pruned unused feed '
'variables {}'.format(name))
pass
return exist_var_names
def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(FLAGS.output_dir, cfg_name)
feed_var_names = [var.name for var in feed_vars.values()]
fetch_list = sorted(test_fetches.items(), key=lambda i: i[0])
target_vars = [var[1] for var in fetch_list]
feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
logger.info("Export inference model to {}, input: {}, output: "
"{}...".format(save_dir, feed_var_names,
[str(var.name) for var in target_vars]))
fluid.io.save_inference_model(
save_dir,
feeded_var_names=feed_var_names,
target_vars=target_vars,
executor=exe,
main_program=infer_prog,
params_filename="__params__")
def main():
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
check_version()
main_arch = cfg.architecture
# Use CPU for exporting inference model instead of GPU
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model = create(main_arch)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['TestReader']['inputs_def']
inputs_def['use_dataloader'] = False
feed_vars, _ = model.build_inputs(**inputs_def)
test_fetches = model.test(feed_vars)
infer_prog = infer_prog.clone(True)
exe.run(startup_prog)
checkpoint.load_params(exe, infer_prog, cfg.weights)
save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
dump_infer_config(FLAGS, cfg)
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output model files.")
FLAGS = parser.parse_args()
main()