Skip to content

Latest commit

 

History

History

arkitscenes

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Prepare ARKitScenes Data for Indoor 3D Detection

For now we only support offline benchmark with a single reconstructed point clound for each scene. Online benchmark for single RGB-D frame detection can be supported in the future. The utils directory is used unchanged from ARKitScenes, except fixing a single issue.

  1. Download data from the official ARKitScenes. From their repo you may run:
python download_data.py 3dod --video-id-csv threedod/3dod_train_val_splits.csv

After this step you have the following file structure here:

3dod
├── metadata.csv
├── Training
│   ├── xxxxxxxx
│   │   ├── xxxxxxxx_3dod_annotation.json
│   │   ├── xxxxxxxx_3dod_mesh.ply
│   │   ├── xxxxxxxx_frames
├── Validation
│   ├── xxxxxxxx
│   │   ├── xxxxxxxx_3dod_annotation.json
│   │   ├── xxxxxxxx_3dod_mesh.ply
│   │   ├── xxxxxxxx_frames
  1. Preprocess data for offline benchmark with our adapted script:
python data_prepare_offline.py

After this step you have the following file structure here:

offline_prepared_data
├── xxxxxxxx_point.npy
├── xxxxxxxx_bbox.npy
├── xxxxxxxx_label.npy
  1. Enter the project root directory, generate training and validation data by running:
python tools/create_data.py arkitscenes --root-path ./data/arkitscenes --out-dir ./data/arkitscenes --extra-tag arkitscenes-offline

Overall you achieve the following file structure in data directory:

arkitscenes
├── offline_prepared_data
│   ├── xxxxxxxx_point.bin
├── arkitscenes_offline_train_infos.pkl
├── arkitscenes_offline_val_infos.pkl