-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
114 lines (104 loc) · 3.65 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/python2
# -*- coding: utf-8 -*-
# coding=utf-8
# -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
#
# File Name : data.py
#
# Purpose : Implement the algorithm
#
# Creation Date : 02-05-2017
#
# Last Modified : Tue 2 May 2017
#
# Created By : Yunfei Chu ([email protected])
#
# _._._._._._._._._._._._._._._._._._._._._.
from config import Config
from data import Records
from neural import NMFM
import numpy as np
# from utils.utils import *
import time
import scipy.io as sio
if __name__ == "__main__":
config = Config()
records_data = Records(config.file_path)
print(records_data.records[0:10])
print(records_data.X_sp_indices[0:10])
print(records_data.X_sp_val[0:10])
config.struct['input_dim'] = records_data.num_nodes
for i in range(10):
mini_batch = records_data.sample(config.batch_size,do_shuffle=False)
print(mini_batch.records)
print(mini_batch.X_sp_indices)
print(mini_batch.X_indices)
print(mini_batch.X_sp_val)
print(mini_batch.X_val_ids)
print('########### START ##########')
model = NMFM(config)
print('############model###########')
model.do_variables_init()
#
last_loss = np.inf # 无限大的正数
converge_count = 0
time_consumed = 0
epochs = 0
loss = 0
i = 0
mini_batch = records_data.sample(config.batch_size,do_shuffle=False)
while (True):
i += 1
st_time = time.time()
model.fit(mini_batch)
time_consumed += time.time() - st_time
loss = model.get_loss(mini_batch)
if i%1 ==0:
loss = model.get_loss(mini_batch)
output = model.get_output(mini_batch)
embedding = model.get_embedding(mini_batch)
a = model.get_a(mini_batch)
b = model.get_b(mini_batch)
w0 = model.get_w0(mini_batch)
w = model.get_w(mini_batch)
print("i: %d Epoch : %d Loss : %.3f, Train time_consumed : %.3fs" % (i,epochs, loss, time_consumed))
print("output:")
print(output)
print("embedding")
print(embedding)
print("a:")
print(a)
print("b:")
print(b)
print("w0:")
print(w0)
print("w:")
print(w)
if records_data.is_epoch_end:
epochs += 1
loss = 0
embedding = None
while (True):
# for i in range(2):
# mini_batch = records_data.sample(config.batch_size, do_shuffle = False)
loss += model.get_loss(mini_batch)
if embedding is None: # todo!
embedding = model.get_embedding(mini_batch)
else:
embedding = np.vstack((embedding, model.get_embedding(mini_batch)[:mini_batch.batch_size]))
if records_data.is_epoch_end:
break
print("Epoch : %d Loss : %.3f, Train time_consumed : %.3fs" % (epochs, loss, time_consumed))
print("Epoch : %d Loss : %.3f, Train time_consumed : %.3fs" % (epochs, loss, time_consumed))
if (loss > last_loss):
converge_count += 1
if converge_count > 10:
print("model converge terminating")
print(converge_count)
# check_link_reconstruction(embedding, graph_data, [1000,3000,5000,7000,9000,10000])
break
if epochs > config.epochs_limit:
print("exceed epochs limit terminating")
break
last_loss = loss
sio.savemat(config.embedding_filename + '_embedding.mat',{'embedding':embedding})