-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbase_feature.py
executable file
·350 lines (228 loc) · 14.2 KB
/
base_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# coding: utf-8
# In[1]:
import pandas as pd
from tqdm import tqdm
import jieba, os, Levenshtein, time
from sklearn.feature_extraction.text import CountVectorizer
from scipy import sparse
from utility import read_file, lcseque_lens, lcsubstr_lens, find_longest_prefix, printlog
from sklearn import preprocessing
import numpy as np
from xpinyin import Pinyin
# In[2]:
print('run base_feature')
# 配置信息
is_print_output = True
all_start_time = time.time()
# In[3]:
since = time.time()
# 读入数据
train_data = read_file('Demo/DataSets/oppo_data_ronud2_20181107/data_train.txt')
val_data = read_file('Demo/DataSets/oppo_data_ronud2_20181107/data_vali.txt')
test_data = read_file('Demo/DataSets/oppo_round2_test_B/oppo_round2_test_B.txt', True)
# 拼接数据一起做特征
not_zip_all_data = pd.concat((train_data, val_data, test_data), axis = 0, ignore_index = True, sort = False)
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[4]:
since = time.time()
# 修正为空的query_prediction
not_zip_all_data.loc[not_zip_all_data.query_prediction == '', 'query_prediction'] = '{}'
# 修正label为int
not_zip_all_data['label'] = not_zip_all_data.label.astype('int')
# 保存要丢弃掉的列
drop_feature = []
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[5]:
since = time.time()
# 根据prefix query_prediction title tag来merge, query_prediction需要编码处理
encoder = preprocessing.LabelEncoder()
not_zip_all_data['diction_label'] = encoder.fit_transform(not_zip_all_data.query_prediction)
# 去除重复算非统计量特征
all_data = not_zip_all_data.drop('label', axis = 1).drop_duplicates().reset_index(drop = True)
drop_feature.append('diction_label')
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[6]:
since = time.time()
# 解析抽取字典
def str_to_dict(dict_str):
"""str convert to dict"""
my_dict = eval(dict_str)
keys, values = my_dict.keys(), my_dict.values()
my_dict = dict(zip(keys,list(map(lambda x: float(x), values))))
return my_dict
all_data['query_prediction'] = all_data.query_prediction.apply(lambda x: str_to_dict(x))
# 取出最大value对应的keys
all_data['max_query_prediction_keys'] = all_data.query_prediction.apply(lambda x: '' if x == {} else max(x, key = x.get))
# 取出字典的keys和values
all_data['query_prediction_keys'] = all_data.query_prediction.apply(lambda x: list(x.keys()))
all_data['query_prediction_values'] = all_data.query_prediction.apply(lambda x: list(x.values()))
drop_feature.extend(['query_prediction', 'query_prediction_keys', 'query_prediction_values', 'max_query_prediction_keys'])
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[7]:
since = time.time()
# 分词, 对每一个item重复的词语去除重复
all_data['prefix_jieba'] = all_data.prefix.apply(lambda x: " ".join(jieba.cut(x, cut_all = False)))
all_data['prefix_jieba'] = all_data.prefix_jieba.apply(lambda x: " ".join(x.split()))
all_data['title_jieba'] = all_data.title.apply(lambda x: " ".join(jieba.cut(x, cut_all = False)))
all_data['title_jieba'] = all_data.title_jieba.apply(lambda x: " ".join(x.split()))
all_data['query_jieba'] = all_data.max_query_prediction_keys.apply(lambda x: " ".join(jieba.cut(x, cut_all = False)))
all_data['query_jieba'] = all_data.query_jieba.apply(lambda x: " ".join(x.split()))
drop_feature.extend(['prefix_jieba', 'title_jieba', 'query_jieba'])
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[8]:
since = time.time()
# 转换成拼音
p = Pinyin()
all_data['prefix_pinyin'] = all_data.prefix.apply(lambda x: p.get_pinyin(x, ' '))
drop_feature.append('prefix_pinyin')
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[9]:
since = time.time()
# 去掉prefix、title中的空格,转换大小写
all_data['prefix_fix'] = all_data.prefix.apply(lambda x: x.replace(' ', '').lower())
all_data['title_fix'] = all_data.title.apply(lambda x: x.replace(' ', '').lower())
all_data['query_fix'] = all_data.max_query_prediction_keys.apply(lambda x: x.replace(' ', '').lower())
all_data['query_prediction_keys_fix'] = all_data.query_prediction_keys.apply(lambda x: list(map(lambda item: item.replace(' ', '').lower(), x)))
drop_feature.extend(['prefix_fix', 'title_fix', 'query_fix', 'query_prediction_keys_fix'])
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[10]:
since = time.time()
# ----- length 特征 -----
list_length_feature = ['prefix', 'title', 'max_query_prediction_keys', 'query_prediction_values']
for feature in list_length_feature:
printlog('计算' + feature + '长度', is_print_output)
all_data[feature + '_length'] = all_data[feature].apply(lambda x: len(x))
for feature in ['prefix_jieba', 'title_jieba', 'query_jieba']:
all_data[feature + '_length'] = all_data[feature].apply(lambda x: len(x.split()))
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[11]:
since = time.time()
# ----- nunique 特征 -----
list_nunique_feature = ['prefix', 'title', 'tag', 'max_query_prediction_keys', 'prefix_pinyin']
all_data['prefix_nunique_title'] = all_data.groupby('prefix').title.transform('nunique')
all_data['prefix_nunique_tag'] = all_data.groupby('prefix').tag.transform('nunique')
all_data['title_nunique_prefix'] = all_data.groupby('title').prefix.transform('nunique')
all_data['title_nunique_tag'] = all_data.groupby('title').tag.transform('nunique')
all_data['title_nunique_query'] = all_data.groupby('title').max_query_prediction_keys.transform('nunique')
all_data['title_nunique_prefix_pinyin'] = all_data.groupby('title').prefix_pinyin.transform('nunique')
all_data['tag_nunique_prefix'] = all_data.groupby('tag').prefix.transform('nunique')
all_data['tag_nunique_title'] = all_data.groupby('tag').title.transform('nunique')
all_data['tag_nunique_max_query'] = all_data.groupby('tag').max_query_prediction_keys.transform('nunique')
all_data['query_nunique_prefix'] = all_data.groupby('max_query_prediction_keys').prefix.transform('nunique')
all_data['query_nunique_title'] = all_data.groupby('max_query_prediction_keys').title.transform('nunique')
all_data['query_nunique_tag'] = all_data.groupby('max_query_prediction_keys').tag.transform('nunique')
all_data['query_nunique_prefix_pinyin'] = all_data.groupby('max_query_prediction_keys').prefix_pinyin.transform('nunique')
all_data['prefix_pinyin_nunique_prefix'] = all_data.groupby('prefix_pinyin').prefix.transform('nunique')
all_data['prefix_pinyin_nunique_title'] = all_data.groupby('prefix_pinyin').title.transform('nunique')
all_data['prefix_pinyin_nunique_tag'] = all_data.groupby('prefix_pinyin').tag.transform('nunique')
all_data['prefix_pinyin_nunique_query'] = all_data.groupby('prefix_pinyin').max_query_prediction_keys.transform('nunique')
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[12]:
since = time.time()
# is in feature
all_data['prefix_isin_title'] = all_data.apply(lambda row:1 if row['prefix_fix'] in row['title_fix'] else 0, axis = 1)
all_data['tag_isin_title'] = all_data.apply(lambda row:1 if row['tag'] in row['title_fix'] else 0, axis = 1)
all_data['query_isin_title'] = all_data.apply(lambda row:1 if row['query_fix'] in row['title_fix'] else 0, axis = 1)
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[13]:
similarity_func = [Levenshtein.ratio, Levenshtein.distance, lcsubstr_lens, lcseque_lens]
statistics_func = [max, min, np.mean, np.std]
# In[14]:
since = time.time()
# 计算prefix/title与query_prediction_keys相似度的list
list_with_query_prediction_keys_similarity = ['prefix_fix', 'title_fix']
for feature in list_with_query_prediction_keys_similarity:
for func in similarity_func:
printlog('计算' + feature + '与query_prediction_keys_' + func.__name__ + '相似度的list', is_print_output)
all_data[feature + '_query_prediction_keys_' + func.__name__ + '_list'] = all_data.apply(lambda row: [func(query, row[feature]) for query in row['query_prediction_keys_fix']], axis = 1)
drop_feature.append(feature + '_query_prediction_keys_' + func.__name__ + '_list')
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[15]:
since = time.time()
# 计算prefix/title与query_prediction_keys相似度的list与query_prediction_values list的乘积list
list_with_query_prediction_keys_similarity_multiple = ['prefix_fix', 'title_fix']
multiple_similarity_func = [Levenshtein.ratio, Levenshtein.distance, lcsubstr_lens, lcseque_lens]
for feature in list_with_query_prediction_keys_similarity_multiple:
for multiple_func in multiple_similarity_func:
printlog('计算' + feature + '与query_prediction_values_' + multiple_func.__name__ + '相似度的list的乘积list', is_print_output)
all_data[feature + '_query_prediction_values_mutiple_' + multiple_func.__name__ + '_list'] = all_data.apply(lambda row: list(map(lambda x, y: x * y, row[feature + '_query_prediction_keys_' + multiple_func.__name__ + '_list'], row['query_prediction_values'])), axis = 1)
drop_feature.append(feature + '_query_prediction_values_mutiple_' + multiple_func.__name__ + '_list')
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[16]:
since = time.time()
# 所有list相关统计的特征
# 找出所有list的特征
list_feature = list(filter(lambda x: x.find('list') != -1, drop_feature)) + ['query_prediction_values']
for feature in list_feature:
for statistics in statistics_func:
printlog('计算' + feature + '的' + statistics.__name__, is_print_output)
all_data[feature + '_' + statistics.__name__] = all_data[feature].apply(lambda x: statistics(x) if x else np.nan)
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[17]:
since = time.time()
# 计算prefix/title/max_query_prediction_keys间的相似度
list_single_feature = ['prefix_fix', 'title_fix', 'query_fix']
for times in range(len(list_single_feature)):
first_feature = list_single_feature.pop(0)
for second_feature in list_single_feature:
for func in similarity_func:
printlog('计算' + first_feature + '与' + second_feature + '的' + func.__name__ + '相似度', is_print_output)
all_data[func.__name__ + '_similarity_' + first_feature + '_with_' + second_feature] = all_data.apply(lambda row: func(row[first_feature], row[second_feature]), axis = 1)
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[18]:
since = time.time()
# 拼接回原数据
all_data = all_data.drop('query_prediction', axis = 1)
not_zip_all_data = pd.merge(not_zip_all_data, all_data, how = 'left', on = ['prefix', 'title', 'tag', 'diction_label'])
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[19]:
since = time.time()
# 算一些全局统计量
# ---- click 特征 ----
list_click_feature = ['prefix', 'title', 'tag', 'max_query_prediction_keys']
# 计算某特征单次点击
for feature in list_click_feature:
printlog('计算' + feature + '点击次数', is_print_output)
not_zip_all_data[feature + '_click'] = not_zip_all_data.groupby(feature)[feature].transform('count')
# 部分二元交叉点击
not_zip_all_data['prefix_title_click'] = not_zip_all_data.groupby(['prefix', 'title']).prefix.transform('count')
not_zip_all_data['prefix_tag_click'] = not_zip_all_data.groupby(['prefix', 'tag']).prefix.transform('count')
not_zip_all_data['title_tag_click'] = not_zip_all_data.groupby(['title', 'tag']).title.transform('count')
not_zip_all_data['title_max_query_prediction_keys_click'] = not_zip_all_data.groupby(['title', 'max_query_prediction_keys']).title.transform('count')
not_zip_all_data['tag_max_query_prediction_keys_click'] = not_zip_all_data.groupby(['tag', 'max_query_prediction_keys']).tag.transform('count')
# 部分三元交叉点击
not_zip_all_data['prefix_title_tag_click'] = not_zip_all_data.groupby(['prefix', 'title', 'tag']).prefix.transform('count')
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[20]:
since = time.time()
# 转换tag
encoder = preprocessing.LabelEncoder()
not_zip_all_data['tag'] = encoder.fit_transform(not_zip_all_data.tag)
encoder = preprocessing.LabelEncoder()
not_zip_all_data['prefix'] = encoder.fit_transform(not_zip_all_data.prefix)
encoder = preprocessing.LabelEncoder()
not_zip_all_data['title'] = encoder.fit_transform(not_zip_all_data.title)
time_elapsed = time.time() - since
print('complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间
# In[21]:
# 保存数据
not_zip_all_data.drop(drop_feature, axis = 1).to_csv('Demo/Cases/base_1126.csv', index = False)
# In[22]:
time_elapsed = time.time() - all_start_time
print('final complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # 打印出来时间