forked from paarthneekhara/text-to-image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
176 lines (133 loc) · 6.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import tensorflow as tf
from Utils import ops
class GAN:
'''
OPTIONS
z_dim : Noise dimension 100
t_dim : Text feature dimension 256
image_size : Image Dimension 64
gf_dim : Number of conv in the first layer generator 64
df_dim : Number of conv in the first layer discriminator 64
gfc_dim : Dimension of gen untis for for fully connected layer 1024
caption_vector_length : Caption Vector Length 2400
batch_size : Batch Size 64
'''
def __init__(self, options):
self.options = options
self.g_bn0 = ops.batch_norm(name='g_bn0')
self.g_bn1 = ops.batch_norm(name='g_bn1')
self.g_bn2 = ops.batch_norm(name='g_bn2')
self.g_bn3 = ops.batch_norm(name='g_bn3')
self.d_bn1 = ops.batch_norm(name='d_bn1')
self.d_bn2 = ops.batch_norm(name='d_bn2')
self.d_bn3 = ops.batch_norm(name='d_bn3')
self.d_bn4 = ops.batch_norm(name='d_bn4')
def build_model(self):
img_size = self.options['image_size']
t_real_image = tf.placeholder('float32', [self.options['batch_size'],img_size, img_size, 3 ], name = 'real_image')
t_wrong_image = tf.placeholder('float32', [self.options['batch_size'],img_size, img_size, 3 ], name = 'wrong_image')
t_real_caption = tf.placeholder('float32', [self.options['batch_size'], self.options['caption_vector_length']], name = 'real_caption_input')
t_z = tf.placeholder('float32', [self.options['batch_size'], self.options['z_dim']])
fake_image = self.generator(t_z, t_real_caption)
disc_real_image, disc_real_image_logits = self.discriminator(t_real_image, t_real_caption)
disc_wrong_image, disc_wrong_image_logits = self.discriminator(t_wrong_image, t_real_caption, reuse = True)
disc_fake_image, disc_fake_image_logits = self.discriminator(fake_image, t_real_caption, reuse = True)
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_fake_image_logits, tf.ones_like(disc_fake_image)))
d_loss1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_real_image_logits, tf.ones_like(disc_real_image)))
d_loss2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_wrong_image_logits, tf.zeros_like(disc_wrong_image)))
d_loss3 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_fake_image_logits, tf.zeros_like(disc_fake_image)))
d_loss = d_loss1 + d_loss2 + d_loss3
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name]
input_tensors = {
't_real_image' : t_real_image,
't_wrong_image' : t_wrong_image,
't_real_caption' : t_real_caption,
't_z' : t_z
}
variables = {
'd_vars' : d_vars,
'g_vars' : g_vars
}
loss = {
'g_loss' : g_loss,
'd_loss' : d_loss
}
outputs = {
'generator' : fake_image
}
checks = {
'd_loss1': d_loss1,
'd_loss2': d_loss2,
'd_loss3' : d_loss3,
'disc_real_image_logits' : disc_real_image_logits,
'disc_wrong_image_logits' : disc_wrong_image,
'disc_fake_image_logits' : disc_fake_image_logits
}
return input_tensors, variables, loss, outputs, checks
def build_generator(self):
img_size = self.options['image_size']
t_real_caption = tf.placeholder('float32', [self.options['batch_size'], self.options['caption_vector_length']], name = 'real_caption_input')
t_z = tf.placeholder('float32', [self.options['batch_size'], self.options['z_dim']])
fake_image = self.sampler(t_z, t_real_caption)
input_tensors = {
't_real_caption' : t_real_caption,
't_z' : t_z
}
outputs = {
'generator' : fake_image
}
return input_tensors, outputs
# Sample Images for a text embedding
def sampler(self, t_z, t_text_embedding):
tf.get_variable_scope().reuse_variables()
s = self.options['image_size']
s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)
reduced_text_embedding = ops.lrelu( ops.linear(t_text_embedding, self.options['t_dim'], 'g_embedding') )
z_concat = tf.concat(1, [t_z, reduced_text_embedding])
z_ = ops.linear(z_concat, self.options['gf_dim']*8*s16*s16, 'g_h0_lin')
h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
h0 = tf.nn.relu(self.g_bn0(h0, train = False))
h1 = ops.deconv2d(h0, [self.options['batch_size'], s8, s8, self.options['gf_dim']*4], name='g_h1')
h1 = tf.nn.relu(self.g_bn1(h1, train = False))
h2 = ops.deconv2d(h1, [self.options['batch_size'], s4, s4, self.options['gf_dim']*2], name='g_h2')
h2 = tf.nn.relu(self.g_bn2(h2, train = False))
h3 = ops.deconv2d(h2, [self.options['batch_size'], s2, s2, self.options['gf_dim']*1], name='g_h3')
h3 = tf.nn.relu(self.g_bn3(h3, train = False))
h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3], name='g_h4')
return (tf.tanh(h4)/2. + 0.5)
# GENERATOR IMPLEMENTATION based on : https://github.com/carpedm20/DCGAN-tensorflow/blob/master/model.py
def generator(self, t_z, t_text_embedding):
s = self.options['image_size']
s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)
reduced_text_embedding = ops.lrelu( ops.linear(t_text_embedding, self.options['t_dim'], 'g_embedding') )
z_concat = tf.concat(1, [t_z, reduced_text_embedding])
z_ = ops.linear(z_concat, self.options['gf_dim']*8*s16*s16, 'g_h0_lin')
h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
h0 = tf.nn.relu(self.g_bn0(h0))
h1 = ops.deconv2d(h0, [self.options['batch_size'], s8, s8, self.options['gf_dim']*4], name='g_h1')
h1 = tf.nn.relu(self.g_bn1(h1))
h2 = ops.deconv2d(h1, [self.options['batch_size'], s4, s4, self.options['gf_dim']*2], name='g_h2')
h2 = tf.nn.relu(self.g_bn2(h2))
h3 = ops.deconv2d(h2, [self.options['batch_size'], s2, s2, self.options['gf_dim']*1], name='g_h3')
h3 = tf.nn.relu(self.g_bn3(h3))
h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3], name='g_h4')
return (tf.tanh(h4)/2. + 0.5)
# DISCRIMINATOR IMPLEMENTATION based on : https://github.com/carpedm20/DCGAN-tensorflow/blob/master/model.py
def discriminator(self, image, t_text_embedding, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'], name = 'd_h0_conv')) #32
h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2, name = 'd_h1_conv'))) #16
h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4, name = 'd_h2_conv'))) #8
h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8, name = 'd_h3_conv'))) #4
# ADD TEXT EMBEDDING TO THE NETWORK
reduced_text_embeddings = ops.lrelu(ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
tiled_embeddings = tf.tile(reduced_text_embeddings, [1,4,4,1], name='tiled_embeddings')
h3_concat = tf.concat( 3, [h3, tiled_embeddings], name='h3_concat')
h3_new = ops.lrelu( self.d_bn4(ops.conv2d(h3_concat, self.options['df_dim']*8, 1,1,1,1, name = 'd_h3_conv_new'))) #4
h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]), 1, 'd_h3_lin')
return tf.nn.sigmoid(h4), h4