-
Notifications
You must be signed in to change notification settings - Fork 5
/
fhpack.cpp
1039 lines (919 loc) · 34.9 KB
/
fhpack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* fhpack, an Apple II hi-res picture compressor.
* By Andy McFadden
* Version 1.0.1, August 2023
*
* Copyright 2015 by faddenSoft. All Rights Reserved.
* See the LICENSE.txt file for distribution terms (Apache 2.0).
*
* Under Linux, you can build it with just:
* g++ -O2 fhpack.cpp -o fhpack
*/
// TODO: prompt before overwriting output file (add "-f" to force)
/*
Format summary:
LZ4FH (FH is "fadden's hi-res") is similar to LZ4 (http://lz4.org) in
that the output is byte-oriented and has two kinds of chunks: "string of
literals" and "match". The format has been modified to make it easier
(and faster) to decode on a 6502.
As with LZ4, the goal is to get reasonable compression ratios with an
extremely fast decoder. On a CPU with 8-bit index registers, there is
a distinct advantage to keeping copy lengths under 256 bytes. Since the
goal is to compress hi-res graphics, runs of identical bytes tend to be
fairly short anyway -- the interleaved nature means that solid blocks of
color aren't necessarily contiguous in memory -- so the ability to encode
runs of arbitrary length adds baggage with little benefit.
Files should use file type $08 (FOT) with auxtype $8066 (vendor-specific,
0x66 is 'f').
The format is very similar to LZ4, with a few key differences. It
retains the idea of encoding the lengths of the next literal string
and next match in a single byte (4 bits each), so it is most efficient
when matches and literals alternate.
file:
1 byte : 0x66 - format magic number for version 1
Not strictly necessary, but gives a hint if the images end up on
a DOS 3.3 disk where there's no dedicated file type.
[ ...one or more chunks follow... ]
chunk:
1 byte : length of literal string (hi 4 bits) and match (lo 4 bits)
A literal-string len of zero indicates no literals (match follows
match). A literal-string len of 15 indicates that the match is
at least 15, and the next byte must be added to it. The match
len is stored as (length - 4), allowing us to represent a match
of length 4 to 18 with 4 bits. A match len of 15 indicates that an
additional byte is needed.
1 byte : (optional) continuation of literal len, 0 - 240
Add 15 to get a match length of 15 - 255.
N bytes: 0 - 255 literal values
1 byte : (optional) continuation of match len, 0 - 236 -or- 253/254
Add 15 to get 15-251. Factoring in the minimum match length of 4
yields 19 - 255. A value of 253 indicates no match (literals
follow literals). This is generally very rare, and is actually
impossible if we overwrite the screen holes as that will guarantee
a match every 120 literals. A value of 254 indicates end-of-data.
2 bytes: (if match) offset to match
The offset is from the start of the output buffer, *not* back
from the current position. That way, if we're writing the output
to $2000, instead of doing a 16-bit subtraction we can just
ORA #$20 into the high byte.
We could save a byte by limiting the match distance to 8 bits (and probably
making it relative to the current position), but the interleaved layout of
the hi-res screen tends to spread things apart. It won't really improve
our speed, which is what we're mostly concerned with.
The use of an explicit end indicator means we don't have to constantly
check to see if we've consumed enough input or produced enough output.
Unlike LZ4, we need to support adjacent runs of literals, so we already
need a special-case check on the match length. It also means we can
choose to trim the file to $1ff8, losing the final "hole", or retain the
original file length.
Note that, in LZ4, the match offset comes before any optional match
length extensions, while in LZ4FH it comes after. This allows the match
offset to be omitted when there's no match. (This was not useful in LZ4
because literals-follow-literals doesn't occur.)
Expansion of uncompressible data is possible, but minimal. The worst
case is a file with no matches. We add three bytes of overhead for
every 255 literals (4/4 byte, 1 for literal len extension, 1 for match
len extension that holds the "no match" symbol). Globally we add +1 for
the magic number. The "end-of-data" symbol replaces the "no match"
symbol, so overall it's int(ceil(8192/255)) * 33 + 1 = 100 bytes.
*/
/*
Implementation notes:
The compression code uses an exhaustive brute-force search for matches.
The "greedy" approach is very slow, the "optimal" approach is extremely
slow. It executes quickly on a modern machine, but would take a long
time to run on an Apple II. On the bright side, with "greedy" parsing
it uses very little memory, and an optimized 6502/65816 implementation
might run in a reasonable amount of time.
Unrelated to the compression is the handling of the "screen holes".
Of the hi-res screens 8192 bytes, 512 are invisible. We can teach the
compression code to skip over them, but that will require additional
code and will interrupt our literal/match strings every 120 bytes, so
it's better to alter the contents of the holes so that they blend into
the surrounding data and handle them as a match string.
Sometimes filling holes with a nearby pattern is not a win. This is
particularly noticeable for the old digitized images in the "contrib"
folder, which have widely varying pixel values near the edges. It turns
out we do slightly better by zeroing the holes out, which allows them
to match previous holes. Also, sometimes there are patterns in the
file that happen to match eight zeroes followed by a splash of color.
Generally speaking the difference in output size is a few dozen bytes,
though in rare cases it can noticeably improve (-200) or cost (+50).
We resolve this conundrum by compressing the file twice and using whichever
works best.
*/
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
enum ProgramMode {
MODE_UNKNOWN, MODE_COMPRESS, MODE_UNCOMPRESS, MODE_TEST
};
#define MAX_SIZE 8192
#define MIN_SIZE (MAX_SIZE - 8) // without final screen hole
#define MAX_EXPANSION 100 // ((MAX_SIZE/255)+1) * 3 + 1
#define MIN_MATCH_LEN 4
#define MAX_MATCH_LEN 255
#define MAX_LITERAL_LEN 255
#define INITIAL_LEN 15
#define EMPTY_MATCH_TOKEN 253
#define EOD_MATCH_TOKEN 254
#define LZ4FH_MAGIC 0x66
//#define DEBUG_MSGS
#ifdef DEBUG_MSGS
# define DBUG(x) printf x
#else
# define DBUG(x)
#endif
/*
* Print usage info.
*/
static void usage(const char* argv0)
{
fprintf(stderr, "fhpack v1.0.1 by Andy McFadden -*- ");
fprintf(stderr, "Copyright 2015 by faddenSoft\n");
fprintf(stderr,
"Source code available from https://github.com/fadden/fhpack\n\n");
fprintf(stderr, "Usage:\n");
fprintf(stderr, " fhpack {-c|-d} [-h] [-1|-9] infile outfile\n\n");
fprintf(stderr, " fhpack {-t} [-h] [-1|-9] infile1 [infile2...] \n\n");
fprintf(stderr, "Use -c to compress, -d to decompress, -t to test\n");
fprintf(stderr, " -h: don't fill or remove hi-res screen holes\n");
fprintf(stderr, " -9: high compression (default)\n");
fprintf(stderr, " -1: fast compression\n");
fprintf(stderr, "\n");
fprintf(stderr, "Example: fhpack -c foo.pic foo.lz4fh\n");
}
/*
* Zero out the "screen holes".
*/
void zeroHoles(uint8_t* inBuf)
{
uint8_t* inPtr = inBuf + 120;
while (inPtr < inBuf + MAX_SIZE) {
memset(inPtr, 0, 8);
inPtr += 128;
}
}
/*
* Fill in the "screen holes" in the image. The hi-res page has
* three 40-byte chunks of visible data, followed by 8 bytes of unseen
* data (padding it to 128).
*
* Instead of simply zeroing them out, we want to examine the data that
* comes before and after, copying whichever seems best into the hole.
* If there's a repeating color pattern (2a 55 2a 55), the hole just
* becomes part of the string, and will be handled as part of a long match.
*
* We can match the bytes that appear before or after the hole.
* Ideally we'd use whichever yields the longest run.
*
* "inBuf" holds MAX_SIZE bytes.
*/
void fillHoles(uint8_t* inBuf)
{
uint8_t* inPtr = inBuf + 120;
while (inPtr < inBuf + MAX_SIZE) {
// check to see if the bytes that follow are a better match
// ("greedy" parsing can be suboptimal)
uint8_t* checkp = inPtr + 8;
bool useAfter = false;
if (checkp < inBuf + MAX_SIZE) {
if (checkp[0] == checkp[2] && checkp[1] == checkp[3]) {
DBUG((" bytes-after looks good at +0x%04lx\n",
checkp - inBuf));
useAfter = true;
} else {
DBUG((" bytes-before used at +0x%04lx\n", checkp - inBuf));
}
} else {
DBUG((" bytes-before used at end +0x%04lx\n", checkp - inBuf));
}
// Do an 8-byte overlapping copy. We can overlap by 2 bytes
// or 4 bytes depending on whether we want a 16-bit or 32-bit
// repeating pattern.
if (useAfter) {
for (int i = 7; i >= 0; i--) {
inPtr[i] = inPtr[i + 2];
}
} else {
for (int i = 0; i < 8; i++) {
inPtr[i] = inPtr[i - 2];
}
}
inPtr += 128;
}
}
/*
* Computes the number of characters that match. Stops when it finds
* a mismatching byte, or "count" is reached.
*/
size_t getMatchLen(const uint8_t* str1, const uint8_t* str2, size_t count)
{
size_t matchLen = 0;
while (count-- && *str1++ == *str2++) {
matchLen++;
}
return matchLen;
}
/*
* Finds a match for the string at "matchPtr", in the buffer pointed
* to by "inBuf" with length "inLen". "matchPtr" must be inside "inBuf".
*
* We explicitly allow data to copy over itself, so a run of 200 0x00
* bytes could be represented by a literal 0x00 followed immediately
* by a match of length 199. We do need to ensure that the initial
* literal(s) go out first, though, so we use "maxStartOffset" to
* restrict where matches may be found.
*
* Returns the length of the longest match found, with the match
* offset in "*pMatchOffset".
*/
size_t findLongestMatch(const uint8_t* matchPtr, const uint8_t* inBuf,
size_t inLen, size_t* pMatchOffset)
{
size_t maxStartOffset = matchPtr - inBuf;
size_t longest = 0;
size_t longestOffset = 0;
DBUG((" findLongestMatch: maxSt=%zd\n", maxStartOffset));
// Brute-force scan through the buffer. Start from the beginning,
// and continue up to the point we've generated until now. (We
// can't search the *entire* buffer right away because the decoder
// can only copy matches from previously-decoded data.)
for (size_t ii = 0; ii < maxStartOffset; ii++) {
// Limit the length of the match by the length of the buffer.
// We don't want the match code to go wandering off the end.
// The match source is always earlier than matchPtr, so we
// want to cap the length based on the distance from matchPtr
// to the end of the buffer.
size_t maxMatchLen = inLen - (matchPtr - inBuf);
if (maxMatchLen > MAX_MATCH_LEN) {
maxMatchLen = MAX_MATCH_LEN;
}
if (maxMatchLen < MIN_MATCH_LEN) {
// too close to end of buffer, no point continuing
break;
}
//DBUG((" maxMatchLen is %zd\n", maxMatchLen));
size_t matchLen = getMatchLen(matchPtr, inBuf + ii, maxMatchLen);
if (matchLen > longest) {
longest = matchLen;
longestOffset = ii;
}
if (matchLen == maxMatchLen) {
// Not going to find a longer one -- any future matches
// will be the same length or shorter.
break;
}
}
*pMatchOffset = longestOffset;
return longest;
}
/*
* Compress a buffer, from "inBuf" to "outBuf".
*
* The input buffer holds between MIN_SIZE and MAX_SIZE bytes (inclusive),
* depending on the length of the source material and whether or not
* we're attempting to preserve the screen holes.
*
* Returns the amount of data in "outBuf" on success, or 0 on failure.
*/
size_t compressBufferOptimally(uint8_t* outBuf, const uint8_t* inBuf,
size_t inLen)
{
// Optimal parsing for data compression is a lot like computing the
// shortest distance between two points in a directed graph. For
// each location, there are two possible "paths": a literal at this
// point, which advances us one byte forward, or a match at this
// point, which takes us several bytes forward.
//
// We walk through the file backward. At each position, we compute
// whether or not a match exists, and then determine the length from
// the current position to the end depending on whether we handle
// the value as a literal or the start of a match. When we reach the
// start of the file, we generate output by walking forward, selecting
// the path based on whether a literal or match results in the best
// outcome.
struct OptNode {
size_t totalCost; // running total "best" length
size_t matchLength; // zero if no match or literal is best
size_t matchOffset;
size_t literalLength; // running total of literal run length
};
OptNode* optList = (OptNode*) calloc(1, (inLen+1) * sizeof(OptNode));
//
// Pass 1: determine optimal path
//
for (unsigned int i = inLen - 1; i < inLen; i--) {
size_t costForMatch, costForLiteral;
// First consider the "match" path. It doesn't matter what
// follows the match, as that has no local effect on the output
// length.
size_t matchOffset;
size_t longestMatch = findLongestMatch(inBuf + i, inBuf, inLen,
&matchOffset);
if (longestMatch < MIN_MATCH_LEN) {
// no match to consider; leave optList[] values at zero
costForMatch = MAX_SIZE * 2; // arbitrary large value
} else {
// 4-14 bytes, fits in mixed-len byte
optList[i].matchLength = longestMatch;
optList[i].matchOffset = matchOffset;
// total is previous total + 3 for match
costForMatch = optList[i + longestMatch].totalCost + 3;
if (longestMatch >= INITIAL_LEN) {
costForMatch++;
}
}
// Now consider the "literal" path. If the next node is a
// literal, we add on to the existing run. If it's a match,
// we're a length-1 literal.
if (i == inLen - 1) {
// special-case start (essentially a 1-byte file)
optList[i].literalLength = 1;
optList[i].totalCost = 2;
costForLiteral = 2; // mixed-len byte + literal
} else {
if (optList[i+1].matchLength != 0) {
// next is match
optList[i].literalLength = 1;
costForLiteral = 1; // literal; mixed-len byte in match
} else if (optList[i+1].literalLength == MAX_LITERAL_LEN) {
// next is max-length literal, start a new one
optList[i].literalLength = 1;
costForLiteral = 3; // mixed-len byte + literal + nomatch
} else {
// next is sub-max-length literal, join it
size_t newLiteralLen = optList[i+1].literalLength + 1;
optList[i].literalLength = newLiteralLen;
costForLiteral = 1;
if (newLiteralLen == INITIAL_LEN) {
// just hit 15, now need the extension byte
costForLiteral++;
}
}
costForLiteral += optList[i + 1].totalCost;
}
if (costForLiteral > costForMatch) {
// use the match
assert(longestMatch != 0);
optList[i].totalCost = costForMatch;
DBUG(("0x%04x use-mat [l=%zd m=%zd] (len=%zd off=0x%04zx) --> 0x%04zx\n",
i, costForLiteral, costForMatch, longestMatch,
matchOffset, optList[i].totalCost));
} else {
// use the literal -- zero the matchLength as a flag
optList[i].matchLength = 0;
optList[i].totalCost = costForLiteral;
DBUG(("0x%04x use-lit [l=%zd m=%zd] (len=%zd) --> 0x%04zx\n",
i, costForLiteral, costForMatch, optList[i].literalLength,
optList[i].totalCost));
}
}
// add one for the magic number; does not include end-of-data marker
// (which will be +1 if the last thing is a literal, +2 if a match)
size_t predictedLength = optList[0].totalCost + 1;
DBUG(("predicted length is %zd\n", predictedLength));
//
// Pass 2: generate output from optimal path
//
//const uint8_t* inPtr = inBuf;
uint8_t* outPtr = outBuf;
*outPtr++ = LZ4FH_MAGIC;
const uint8_t* literalSrcPtr = NULL;
size_t numLiterals = 0;
for (unsigned int i = 0; i < inLen; ) {
if (optList[i].matchLength == 0) {
// no match at this point, select literals
if (numLiterals != 0) {
// Previous entry was literals. Because we parsed it
// backwards, we can end up with 32 literals followed
// by 255 literals, rather than the other way around.
DBUG((" output literal-literal (%zd)\n", numLiterals));
if (numLiterals < INITIAL_LEN) {
// output 0-14 literals
*outPtr++ = (numLiterals << 4) | 0x0f;
} else {
// output 15+(0-240) literals
*outPtr++ = 0xff;
*outPtr++ = numLiterals - INITIAL_LEN;
}
memcpy(outPtr, literalSrcPtr, numLiterals);
outPtr += numLiterals;
*outPtr++ = EMPTY_MATCH_TOKEN;
}
numLiterals = optList[i].literalLength;
literalSrcPtr = inBuf + i;
// advance to next node
i += numLiterals;
} else {
// found a match, output previous literals first
size_t longestMatch = optList[i].matchLength;
size_t matchOffset = optList[i].matchOffset;
size_t adjustedMatch = longestMatch - MIN_MATCH_LEN;
// Start by emitting the 4/4 length byte.
uint8_t mixedLengths;
if (adjustedMatch <= INITIAL_LEN) {
mixedLengths = adjustedMatch;
} else {
mixedLengths = INITIAL_LEN;
}
if (numLiterals <= INITIAL_LEN) {
mixedLengths |= numLiterals << 4;
} else {
mixedLengths |= INITIAL_LEN << 4;
}
DBUG((" match len=%zd off=0x%04zx lits=%zd mix=0x%02x\n",
longestMatch, matchOffset, numLiterals,
mixedLengths));
*outPtr++ = mixedLengths;
// Output the literals, starting with the extended length.
if (numLiterals >= INITIAL_LEN) {
*outPtr++ = numLiterals - INITIAL_LEN;
}
memcpy(outPtr, literalSrcPtr, numLiterals);
outPtr += numLiterals;
numLiterals = 0;
literalSrcPtr = NULL; // debug/sanity check
// Now output the match, starting with the extended length.
if (adjustedMatch >= INITIAL_LEN) {
*outPtr++ = adjustedMatch - INITIAL_LEN;
}
*outPtr++ = matchOffset & 0xff;
*outPtr++ = (matchOffset >> 8) & 0xff;
i += longestMatch;
}
}
// housekeeping check -- factor in end-of-data circumstances
predictedLength++;
if (numLiterals == 0) {
predictedLength++;
}
// Dump any remaining literals, with the end-of-data indicator
// in the match len.
DBUG(("ending with numLiterals=%zd\n", numLiterals));
if (numLiterals < INITIAL_LEN) {
// 0-14 literals, only need the nibble
*outPtr++ = (numLiterals << 4) | 0x0f;
} else {
// 15-255 literals, need the extra byte
*outPtr++ = 0xff;
*outPtr++ = numLiterals - INITIAL_LEN;
}
memcpy(outPtr, literalSrcPtr, numLiterals);
outPtr += numLiterals;
*outPtr++ = EOD_MATCH_TOKEN;
DBUG(("Predicted length %zd, actual %ld\n",
predictedLength, outPtr - outBuf));
free(optList);
return outPtr - outBuf;
}
/*
* Compress a buffer, from "inBuf" to "outBuf".
*
* The input buffer holds between MIN_SIZE and MAX_SIZE bytes (inclusive),
* depending on the length of the source material and whether or not
* we're attempting to preserve the screen holes.
*
* Returns the amount of data in "outBuf" on success, or 0 on failure.
*/
size_t compressBufferGreedily(uint8_t* outBuf, const uint8_t* inBuf,
size_t inLen)
{
const uint8_t* inPtr = inBuf;
uint8_t* outPtr = outBuf;
const uint8_t* literalSrcPtr = NULL;
size_t numLiterals = 0;
*outPtr++ = LZ4FH_MAGIC;
// Basic strategy: walk forward, searching for a match. When we
// find one, output the literals then the match.
//
// If the literal would cause us to exceed the maximum literal
// length, output the previous literals with a "no match" indicator.
while (inPtr < inBuf + inLen) {
DBUG(("Loop: off 0x%08lx\n", inPtr - inBuf));
// sanity-check on MAX_EXPANSION value
assert(outPtr - outBuf < MAX_SIZE + MAX_EXPANSION);
size_t matchOffset;
size_t longestMatch = findLongestMatch(inPtr, inBuf, inLen,
&matchOffset);
if (longestMatch < MIN_MATCH_LEN) {
// No good match found here, emit as literal.
if (numLiterals == MAX_LITERAL_LEN) {
// We've maxed out the literal string length. Emit
// the previously literals with an empty match indicator.
DBUG((" max literals reached\n"));
*outPtr++ = 0xff; // literal-len=15, match-len=15
*outPtr++ = MAX_LITERAL_LEN - INITIAL_LEN; // 240
memcpy(outPtr, literalSrcPtr, numLiterals);
outPtr += numLiterals;
// Emit empty match indicator.
*outPtr++ = EMPTY_MATCH_TOKEN;
// Reset literal len, continue.
numLiterals = 0;
}
if (numLiterals == 0) {
// Start of run of literals. Save pointer to data.
literalSrcPtr = inPtr;
}
numLiterals++;
inPtr++;
} else {
// Good match found.
size_t adjustedMatch = longestMatch - MIN_MATCH_LEN;
// Start by emitting the 4/4 length byte.
uint8_t mixedLengths;
if (adjustedMatch <= INITIAL_LEN) {
mixedLengths = adjustedMatch;
} else {
mixedLengths = INITIAL_LEN;
}
if (numLiterals <= INITIAL_LEN) {
mixedLengths |= numLiterals << 4;
} else {
mixedLengths |= INITIAL_LEN << 4;
}
DBUG((" match len=%zd off=0x%04zx lits=%zd mix=0x%02x\n",
longestMatch, matchOffset, numLiterals,
mixedLengths));
*outPtr++ = mixedLengths;
// Output the literals, starting with the extended length.
if (numLiterals >= INITIAL_LEN) {
*outPtr++ = numLiterals - INITIAL_LEN;
}
memcpy(outPtr, literalSrcPtr, numLiterals);
outPtr += numLiterals;
numLiterals = 0;
literalSrcPtr = NULL; // debug/sanity check
// Now output the match, starting with the extended length.
if (adjustedMatch >= INITIAL_LEN) {
*outPtr++ = adjustedMatch - INITIAL_LEN;
}
*outPtr++ = matchOffset & 0xff;
*outPtr++ = (matchOffset >> 8) & 0xff;
inPtr += longestMatch;
}
}
// Dump any remaining literals, with the end-of-data indicator
// in the match len.
DBUG(("ending with numLiterals=%zd\n", numLiterals));
if (numLiterals < INITIAL_LEN) {
// 0-14 literals, only need the nibble
*outPtr++ = (numLiterals << 4) | 0x0f;
} else {
// 15-255 literals, need the extra byte
*outPtr++ = 0xff;
*outPtr++ = numLiterals - INITIAL_LEN;
}
memcpy(outPtr, literalSrcPtr, numLiterals);
outPtr += numLiterals;
*outPtr++ = EOD_MATCH_TOKEN;
return outPtr - outBuf;
}
/*
* Uncompress from "inBuf" to "outBuf".
*
* Given valid data, "inLen" is not necessary. It can be used as an
* error check.
*
* Returns the uncompressed length on success, 0 on failure.
*/
size_t uncompressBuffer(uint8_t* outBuf, const uint8_t* inBuf, size_t inLen)
{
uint8_t* outPtr = outBuf;
const uint8_t* inPtr = inBuf;
if (*inPtr++ != LZ4FH_MAGIC) {
fprintf(stderr, "Missing LZ4FH magic\n");
return 0;
}
while (true) {
uint8_t mixedLen = *inPtr++;
int literalLen = mixedLen >> 4;
if (literalLen != 0) {
if (literalLen == INITIAL_LEN) {
literalLen += *inPtr++;
}
DBUG(("Literals: %d\n", literalLen));
if ((outPtr - outBuf) + literalLen > (long) MAX_SIZE ||
(inPtr - inBuf) + literalLen > (long) inLen) {
fprintf(stderr,
"Buffer overrun L: outPosn=%zd inPosn=%zd len=%d inLen=%ld\n",
outPtr - outBuf, inPtr - inBuf, literalLen, inLen);
return 0;
}
memcpy(outPtr, inPtr, literalLen);
outPtr += literalLen;
inPtr += literalLen;
} else {
DBUG(("Literals: none\n"));
}
int matchLen = mixedLen & 0x0f;
if (matchLen == INITIAL_LEN) {
uint8_t addon = *inPtr++;
if (addon == EMPTY_MATCH_TOKEN) {
DBUG(("Match: none\n"));
matchLen = - MIN_MATCH_LEN;
} else if (addon == EOD_MATCH_TOKEN) {
DBUG(("Hit end-of-data at 0x%04lx\n", outPtr - outBuf));
break; // out of while
} else {
matchLen += addon;
}
}
matchLen += MIN_MATCH_LEN;
if (matchLen != 0) {
int matchOffset = *inPtr++;
matchOffset |= (*inPtr++) << 8;
DBUG(("Match: %d at %d\n", matchLen, matchOffset));
// Can't use memcpy() here, because we need to guarantee
// that the match is overlapping.
uint8_t* srcPtr = outBuf + matchOffset;
if ((outPtr - outBuf) + matchLen > MAX_SIZE ||
(srcPtr - outBuf) + matchLen > MAX_SIZE) {
fprintf(stderr,
"Buffer overrun M: outPosn=%zd srcPosn=%zd len=%d\n",
outPtr - outBuf, srcPtr - outBuf, matchLen);
return 0;
}
while (matchLen-- != 0) {
*outPtr++ = *srcPtr++;
}
}
}
if (inPtr - inBuf != (long) inLen) {
fprintf(stderr, "Warning: uncompress used only %ld of %zd bytes\n",
inPtr - inBuf, inLen);
}
return outPtr - outBuf;
}
/*
* Compress a file, from "inFileName" to "outFileName".
*
* Returns 0 on success.
*/
int compressFile(const char* outFileName, const char* inFileName,
bool doPreserveHoles, bool useGreedyParsing)
{
int result = -1;
uint8_t inBuf1[MAX_SIZE];
uint8_t inBuf2[MAX_SIZE];
uint8_t verifyBuf[MAX_SIZE];
uint8_t outBuf1[MAX_SIZE + MAX_EXPANSION];
uint8_t outBuf2[MAX_SIZE + MAX_EXPANSION];
uint8_t* outBuf = NULL;
uint8_t* inBuf = NULL;
size_t outSize, sourceLen, uncompressedLen;
FILE* outfp = NULL;
FILE* infp;
infp = fopen(inFileName, "rb");
if (infp == NULL) {
perror("Unable to open input file");
return -1;
}
if (outFileName != NULL) {
outfp = fopen(outFileName, "wb");
if (outfp == NULL) {
perror("Unable to open output file");
fclose(infp);
return -1;
}
}
fseek(infp, 0, SEEK_END);
long fileLen = ftell(infp);
rewind(infp);
if (fileLen < MIN_SIZE || fileLen > MAX_SIZE) {
fprintf(stderr, "ERROR: input file is %ld bytes, must be %d - %d\n",
fileLen, MIN_SIZE, MAX_SIZE);
goto bail;
}
// Read data into buffer.
if (fread(inBuf1, 1, fileLen, infp) != (size_t) fileLen) {
perror("Failed while reading data");
goto bail;
}
if (doPreserveHoles) {
// Don't modify the input.
sourceLen = fileLen; // retain original file length
if (useGreedyParsing) {
outSize = compressBufferGreedily(outBuf1, inBuf1, sourceLen);
} else {
outSize = compressBufferOptimally(outBuf1, inBuf1, sourceLen);
}
inBuf = inBuf1;
outBuf = outBuf1;
} else {
sourceLen = MIN_SIZE; // always drop the last 8 bytes
memcpy(inBuf2, inBuf1, sourceLen);
// try it twice, with zero-filled holes and content-filled holes
size_t outSize1;
zeroHoles(inBuf1);
if (useGreedyParsing) {
outSize1 = compressBufferGreedily(outBuf1, inBuf1, sourceLen);
} else {
outSize1 = compressBufferOptimally(outBuf1, inBuf1, sourceLen);
}
size_t outSize2;
fillHoles(inBuf2);
if (useGreedyParsing) {
outSize2 = compressBufferGreedily(outBuf2, inBuf2, sourceLen);
} else {
outSize2 = compressBufferOptimally(outBuf2, inBuf2, sourceLen);
}
if (false) { // save hole-punched output for examination
FILE* foo = fopen("HOLES", "wb");
fwrite(inBuf2, 1, MIN_SIZE, foo);
fclose(foo);
}
if (outSize1 <= outSize2) {
printf(" using zeroed-out holes (%zd vs. %zd)\n",
outSize1, outSize2);
outSize = outSize1;
inBuf = inBuf1;
outBuf = outBuf1;
} else {
printf(" using filled-in holes (%zd vs. %zd)\n",
outSize2, outSize1);
outSize = outSize2;
inBuf = inBuf2;
outBuf = outBuf2;
}
}
if (outSize == 0) {
fprintf(stderr, "Compression failed\n");
goto bail;
}
DBUG(("*** outSize is %zd\n", outSize));
// uncompress the data we just compressed
memset(verifyBuf, 0xcc, sizeof(verifyBuf));
uncompressedLen = uncompressBuffer(verifyBuf, outBuf, outSize);
if (uncompressedLen != sourceLen) {
fprintf(stderr, "ERROR: verify expanded %zd of expected %zd bytes\n",
uncompressedLen, sourceLen);
goto bail;
}
// byte-for-byte comparison
for (size_t ii = 0; ii < sourceLen; ii++) {
if (inBuf[ii] != verifyBuf[ii]) {
fprintf(stderr,
"ERROR: expansion mismatch (byte %zd, 0x%02x 0x%02x)\n",
ii, inBuf[ii], verifyBuf[ii]);
goto bail;
}
}
DBUG(("Verification succeeded\n"));
if (outfp != NULL) {
/* write the data */
if (fwrite(outBuf, 1, outSize, outfp) != outSize) {
perror("Failed while writing data");
goto bail;
}
} else {
// must be in test mode
printf(" success -- compressed len is %zd\n", outSize);
}
result = 0;
bail:
fclose(infp);
if (outfp != NULL) {
fclose(outfp);
}
if (result != 0 && outFileName != NULL) {
unlink(outFileName);
}
return result;
}
/*
* Uncompress data from one file to another.
*
* Returns 0 on success.
*/
int uncompressFile(const char* outFileName, const char* inFileName)
{
int result = -1;
uint8_t inBuf[MAX_SIZE + MAX_EXPANSION];
uint8_t outBuf[MAX_SIZE];
size_t outSize;
FILE* outfp = NULL;
FILE* infp;
infp = fopen(inFileName, "rb");
if (infp == NULL) {
perror("Unable to open input file");
return -1;
}
outfp = fopen(outFileName, "wb");
if (outfp == NULL) {
perror("Unable to open output file");
fclose(infp);
return -1;
}
fseek(infp, 0, SEEK_END);
long fileLen = ftell(infp);
rewind(infp);
if (fileLen < 10 || fileLen > MAX_SIZE + MAX_EXPANSION) {
// 10 just ensures we have enough for magic number, chunk, eod
fprintf(stderr, "ERROR: input file is %ld bytes, must be < %d\n",
fileLen, MAX_SIZE + MAX_EXPANSION);
goto bail;
}
// Read data into buffer.
if (fread(inBuf, 1, fileLen, infp) != (size_t) fileLen) {
perror("Failed while reading data");
goto bail;
}
outSize = uncompressBuffer(outBuf, inBuf, fileLen);
if (outSize == 0) {
goto bail;
}
DBUG(("*** outSize is %zd\n", outSize));
/* write the data */
if (fwrite(outBuf, 1, outSize, outfp) != outSize) {
perror("Failed while writing data");
goto bail;
}
result = 0;
bail:
fclose(infp);
fclose(outfp);
if (result != 0) {
unlink(outFileName);
}
return result;
}
/*
* Process args.
*/
int main(int argc, char* argv[])
{
ProgramMode mode = MODE_UNKNOWN;
bool doPreserveHoles = false;
bool useGreedyParsing = false;
bool wantUsage = false;
int opt;
while ((opt = getopt(argc, argv, "19cdth")) != -1) {
switch (opt) {
case '1':
useGreedyParsing = true;
break;
case '9':
useGreedyParsing = false;
break;
case 'c':
if (mode == MODE_UNKNOWN) {
mode = MODE_COMPRESS;
} else {
wantUsage = true;
}
break;
case 'd':
if (mode == MODE_UNKNOWN) {
mode = MODE_UNCOMPRESS;
} else {
wantUsage = true;
}
break;
case 't':
if (mode == MODE_UNKNOWN) {
mode = MODE_TEST;
} else {
wantUsage = true;
}
break;
case 'h':
doPreserveHoles = true;
break;
default: