-
Notifications
You must be signed in to change notification settings - Fork 783
/
Copy pathfrontend.py
473 lines (375 loc) · 21.2 KB
/
frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from keras.models import Model
from keras.layers import Reshape, Activation, Conv2D, Input, MaxPooling2D, BatchNormalization, Flatten, Dense, Lambda
from keras.layers.advanced_activations import LeakyReLU
import tensorflow as tf
import numpy as np
import os
import cv2
from utils import decode_netout, compute_overlap, compute_ap
from keras.applications.mobilenet import MobileNet
from keras.layers.merge import concatenate
from keras.optimizers import SGD, Adam, RMSprop
from preprocessing import BatchGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
from backend import TinyYoloFeature, FullYoloFeature, MobileNetFeature, SqueezeNetFeature, Inception3Feature, VGG16Feature, ResNet50Feature
class YOLO(object):
def __init__(self, backend,
input_size,
labels,
max_box_per_image,
anchors):
self.input_size = input_size
self.labels = list(labels)
self.nb_class = len(self.labels)
self.nb_box = len(anchors)//2
self.class_wt = np.ones(self.nb_class, dtype='float32')
self.anchors = anchors
self.max_box_per_image = max_box_per_image
##########################
# Make the model
##########################
# make the feature extractor layers
input_image = Input(shape=(self.input_size, self.input_size, 3))
self.true_boxes = Input(shape=(1, 1, 1, max_box_per_image , 4))
if backend == 'Inception3':
self.feature_extractor = Inception3Feature(self.input_size)
elif backend == 'SqueezeNet':
self.feature_extractor = SqueezeNetFeature(self.input_size)
elif backend == 'MobileNet':
self.feature_extractor = MobileNetFeature(self.input_size)
elif backend == 'Full Yolo':
self.feature_extractor = FullYoloFeature(self.input_size)
elif backend == 'Tiny Yolo':
self.feature_extractor = TinyYoloFeature(self.input_size)
elif backend == 'VGG16':
self.feature_extractor = VGG16Feature(self.input_size)
elif backend == 'ResNet50':
self.feature_extractor = ResNet50Feature(self.input_size)
else:
raise Exception('Architecture not supported! Only support Full Yolo, Tiny Yolo, MobileNet, SqueezeNet, VGG16, ResNet50, and Inception3 at the moment!')
print(self.feature_extractor.get_output_shape())
self.grid_h, self.grid_w = self.feature_extractor.get_output_shape()
features = self.feature_extractor.extract(input_image)
# make the object detection layer
output = Conv2D(self.nb_box * (4 + 1 + self.nb_class),
(1,1), strides=(1,1),
padding='same',
name='DetectionLayer',
kernel_initializer='lecun_normal')(features)
output = Reshape((self.grid_h, self.grid_w, self.nb_box, 4 + 1 + self.nb_class))(output)
output = Lambda(lambda args: args[0])([output, self.true_boxes])
self.model = Model([input_image, self.true_boxes], output)
# initialize the weights of the detection layer
layer = self.model.layers[-4]
weights = layer.get_weights()
new_kernel = np.random.normal(size=weights[0].shape)/(self.grid_h*self.grid_w)
new_bias = np.random.normal(size=weights[1].shape)/(self.grid_h*self.grid_w)
layer.set_weights([new_kernel, new_bias])
# print a summary of the whole model
self.model.summary()
def custom_loss(self, y_true, y_pred):
mask_shape = tf.shape(y_true)[:4]
cell_x = tf.to_float(tf.reshape(tf.tile(tf.range(self.grid_w), [self.grid_h]), (1, self.grid_h, self.grid_w, 1, 1)))
cell_y = tf.transpose(cell_x, (0,2,1,3,4))
cell_grid = tf.tile(tf.concat([cell_x,cell_y], -1), [self.batch_size, 1, 1, self.nb_box, 1])
coord_mask = tf.zeros(mask_shape)
conf_mask = tf.zeros(mask_shape)
class_mask = tf.zeros(mask_shape)
seen = tf.Variable(0.)
total_recall = tf.Variable(0.)
"""
Adjust prediction
"""
### adjust x and y
pred_box_xy = tf.sigmoid(y_pred[..., :2]) + cell_grid
### adjust w and h
pred_box_wh = tf.exp(y_pred[..., 2:4]) * np.reshape(self.anchors, [1,1,1,self.nb_box,2])
### adjust confidence
pred_box_conf = tf.sigmoid(y_pred[..., 4])
### adjust class probabilities
pred_box_class = y_pred[..., 5:]
"""
Adjust ground truth
"""
### adjust x and y
true_box_xy = y_true[..., 0:2] # relative position to the containing cell
### adjust w and h
true_box_wh = y_true[..., 2:4] # number of cells accross, horizontally and vertically
### adjust confidence
true_wh_half = true_box_wh / 2.
true_mins = true_box_xy - true_wh_half
true_maxes = true_box_xy + true_wh_half
pred_wh_half = pred_box_wh / 2.
pred_mins = pred_box_xy - pred_wh_half
pred_maxes = pred_box_xy + pred_wh_half
intersect_mins = tf.maximum(pred_mins, true_mins)
intersect_maxes = tf.minimum(pred_maxes, true_maxes)
intersect_wh = tf.maximum(intersect_maxes - intersect_mins, 0.)
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]
true_areas = true_box_wh[..., 0] * true_box_wh[..., 1]
pred_areas = pred_box_wh[..., 0] * pred_box_wh[..., 1]
union_areas = pred_areas + true_areas - intersect_areas
iou_scores = tf.truediv(intersect_areas, union_areas)
true_box_conf = iou_scores * y_true[..., 4]
### adjust class probabilities
true_box_class = tf.argmax(y_true[..., 5:], -1)
"""
Determine the masks
"""
### coordinate mask: simply the position of the ground truth boxes (the predictors)
coord_mask = tf.expand_dims(y_true[..., 4], axis=-1) * self.coord_scale
### confidence mask: penelize predictors + penalize boxes with low IOU
# penalize the confidence of the boxes, which have IOU with some ground truth box < 0.6
true_xy = self.true_boxes[..., 0:2]
true_wh = self.true_boxes[..., 2:4]
true_wh_half = true_wh / 2.
true_mins = true_xy - true_wh_half
true_maxes = true_xy + true_wh_half
pred_xy = tf.expand_dims(pred_box_xy, 4)
pred_wh = tf.expand_dims(pred_box_wh, 4)
pred_wh_half = pred_wh / 2.
pred_mins = pred_xy - pred_wh_half
pred_maxes = pred_xy + pred_wh_half
intersect_mins = tf.maximum(pred_mins, true_mins)
intersect_maxes = tf.minimum(pred_maxes, true_maxes)
intersect_wh = tf.maximum(intersect_maxes - intersect_mins, 0.)
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]
true_areas = true_wh[..., 0] * true_wh[..., 1]
pred_areas = pred_wh[..., 0] * pred_wh[..., 1]
union_areas = pred_areas + true_areas - intersect_areas
iou_scores = tf.truediv(intersect_areas, union_areas)
best_ious = tf.reduce_max(iou_scores, axis=4)
conf_mask = conf_mask + tf.to_float(best_ious < 0.6) * (1 - y_true[..., 4]) * self.no_object_scale
# penalize the confidence of the boxes, which are reponsible for corresponding ground truth box
conf_mask = conf_mask + y_true[..., 4] * self.object_scale
### class mask: simply the position of the ground truth boxes (the predictors)
class_mask = y_true[..., 4] * tf.gather(self.class_wt, true_box_class) * self.class_scale
"""
Warm-up training
"""
no_boxes_mask = tf.to_float(coord_mask < self.coord_scale/2.)
seen = tf.assign_add(seen, 1.)
true_box_xy, true_box_wh, coord_mask = tf.cond(tf.less(seen, self.warmup_batches+1),
lambda: [true_box_xy + (0.5 + cell_grid) * no_boxes_mask,
true_box_wh + tf.ones_like(true_box_wh) * \
np.reshape(self.anchors, [1,1,1,self.nb_box,2]) * \
no_boxes_mask,
tf.ones_like(coord_mask)],
lambda: [true_box_xy,
true_box_wh,
coord_mask])
"""
Finalize the loss
"""
nb_coord_box = tf.reduce_sum(tf.to_float(coord_mask > 0.0))
nb_conf_box = tf.reduce_sum(tf.to_float(conf_mask > 0.0))
nb_class_box = tf.reduce_sum(tf.to_float(class_mask > 0.0))
loss_xy = tf.reduce_sum(tf.square(true_box_xy-pred_box_xy) * coord_mask) / (nb_coord_box + 1e-6) / 2.
loss_wh = tf.reduce_sum(tf.square(true_box_wh-pred_box_wh) * coord_mask) / (nb_coord_box + 1e-6) / 2.
loss_conf = tf.reduce_sum(tf.square(true_box_conf-pred_box_conf) * conf_mask) / (nb_conf_box + 1e-6) / 2.
loss_class = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=true_box_class, logits=pred_box_class)
loss_class = tf.reduce_sum(loss_class * class_mask) / (nb_class_box + 1e-6)
loss = tf.cond(tf.less(seen, self.warmup_batches+1),
lambda: loss_xy + loss_wh + loss_conf + loss_class + 10,
lambda: loss_xy + loss_wh + loss_conf + loss_class)
if self.debug:
nb_true_box = tf.reduce_sum(y_true[..., 4])
nb_pred_box = tf.reduce_sum(tf.to_float(true_box_conf > 0.5) * tf.to_float(pred_box_conf > 0.3))
current_recall = nb_pred_box/(nb_true_box + 1e-6)
total_recall = tf.assign_add(total_recall, current_recall)
loss = tf.Print(loss, [loss_xy], message='Loss XY \t', summarize=1000)
loss = tf.Print(loss, [loss_wh], message='Loss WH \t', summarize=1000)
loss = tf.Print(loss, [loss_conf], message='Loss Conf \t', summarize=1000)
loss = tf.Print(loss, [loss_class], message='Loss Class \t', summarize=1000)
loss = tf.Print(loss, [loss], message='Total Loss \t', summarize=1000)
loss = tf.Print(loss, [current_recall], message='Current Recall \t', summarize=1000)
loss = tf.Print(loss, [total_recall/seen], message='Average Recall \t', summarize=1000)
return loss
def load_weights(self, weight_path):
self.model.load_weights(weight_path)
def train(self, train_imgs, # the list of images to train the model
valid_imgs, # the list of images used to validate the model
train_times, # the number of time to repeat the training set, often used for small datasets
valid_times, # the number of times to repeat the validation set, often used for small datasets
nb_epochs, # number of epoches
learning_rate, # the learning rate
batch_size, # the size of the batch
warmup_epochs, # number of initial batches to let the model familiarize with the new dataset
object_scale,
no_object_scale,
coord_scale,
class_scale,
saved_weights_name='best_weights.h5',
debug=False):
self.batch_size = batch_size
self.object_scale = object_scale
self.no_object_scale = no_object_scale
self.coord_scale = coord_scale
self.class_scale = class_scale
self.debug = debug
############################################
# Make train and validation generators
############################################
generator_config = {
'IMAGE_H' : self.input_size,
'IMAGE_W' : self.input_size,
'GRID_H' : self.grid_h,
'GRID_W' : self.grid_w,
'BOX' : self.nb_box,
'LABELS' : self.labels,
'CLASS' : len(self.labels),
'ANCHORS' : self.anchors,
'BATCH_SIZE' : self.batch_size,
'TRUE_BOX_BUFFER' : self.max_box_per_image,
}
train_generator = BatchGenerator(train_imgs,
generator_config,
norm=self.feature_extractor.normalize)
valid_generator = BatchGenerator(valid_imgs,
generator_config,
norm=self.feature_extractor.normalize,
jitter=False)
self.warmup_batches = warmup_epochs * (train_times*len(train_generator) + valid_times*len(valid_generator))
############################################
# Compile the model
############################################
optimizer = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
self.model.compile(loss=self.custom_loss, optimizer=optimizer)
############################################
# Make a few callbacks
############################################
early_stop = EarlyStopping(monitor='val_loss',
min_delta=0.001,
patience=3,
mode='min',
verbose=1)
checkpoint = ModelCheckpoint(saved_weights_name,
monitor='val_loss',
verbose=1,
save_best_only=True,
mode='min',
period=1)
tensorboard = TensorBoard(log_dir=os.path.expanduser('~/logs/'),
histogram_freq=0,
#write_batch_performance=True,
write_graph=True,
write_images=False)
############################################
# Start the training process
############################################
self.model.fit_generator(generator = train_generator,
steps_per_epoch = len(train_generator) * train_times,
epochs = warmup_epochs + nb_epochs,
verbose = 2 if debug else 1,
validation_data = valid_generator,
validation_steps = len(valid_generator) * valid_times,
callbacks = [early_stop, checkpoint, tensorboard],
workers = 3,
max_queue_size = 8)
############################################
# Compute mAP on the validation set
############################################
average_precisions = self.evaluate(valid_generator)
# print evaluation
for label, average_precision in average_precisions.items():
print(self.labels[label], '{:.4f}'.format(average_precision))
print('mAP: {:.4f}'.format(sum(average_precisions.values()) / len(average_precisions)))
def evaluate(self,
generator,
iou_threshold=0.3,
score_threshold=0.3,
max_detections=100,
save_path=None):
""" Evaluate a given dataset using a given model.
code originally from https://github.com/fizyr/keras-retinanet
# Arguments
generator : The generator that represents the dataset to evaluate.
model : The model to evaluate.
iou_threshold : The threshold used to consider when a detection is positive or negative.
score_threshold : The score confidence threshold to use for detections.
max_detections : The maximum number of detections to use per image.
save_path : The path to save images with visualized detections to.
# Returns
A dict mapping class names to mAP scores.
"""
# gather all detections and annotations
all_detections = [[None for i in range(generator.num_classes())] for j in range(generator.size())]
all_annotations = [[None for i in range(generator.num_classes())] for j in range(generator.size())]
for i in range(generator.size()):
raw_image = generator.load_image(i)
raw_height, raw_width, raw_channels = raw_image.shape
# make the boxes and the labels
pred_boxes = self.predict(raw_image)
score = np.array([box.score for box in pred_boxes])
pred_labels = np.array([box.label for box in pred_boxes])
if len(pred_boxes) > 0:
pred_boxes = np.array([[box.xmin*raw_width, box.ymin*raw_height, box.xmax*raw_width, box.ymax*raw_height, box.score] for box in pred_boxes])
else:
pred_boxes = np.array([[]])
# sort the boxes and the labels according to scores
score_sort = np.argsort(-score)
pred_labels = pred_labels[score_sort]
pred_boxes = pred_boxes[score_sort]
# copy detections to all_detections
for label in range(generator.num_classes()):
all_detections[i][label] = pred_boxes[pred_labels == label, :]
annotations = generator.load_annotation(i)
# copy detections to all_annotations
for label in range(generator.num_classes()):
all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy()
# compute mAP by comparing all detections and all annotations
average_precisions = {}
for label in range(generator.num_classes()):
false_positives = np.zeros((0,))
true_positives = np.zeros((0,))
scores = np.zeros((0,))
num_annotations = 0.0
for i in range(generator.size()):
detections = all_detections[i][label]
annotations = all_annotations[i][label]
num_annotations += annotations.shape[0]
detected_annotations = []
for d in detections:
scores = np.append(scores, d[4])
if annotations.shape[0] == 0:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
continue
overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations)
assigned_annotation = np.argmax(overlaps, axis=1)
max_overlap = overlaps[0, assigned_annotation]
if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
false_positives = np.append(false_positives, 0)
true_positives = np.append(true_positives, 1)
detected_annotations.append(assigned_annotation)
else:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
# no annotations -> AP for this class is 0 (is this correct?)
if num_annotations == 0:
average_precisions[label] = 0
continue
# sort by score
indices = np.argsort(-scores)
false_positives = false_positives[indices]
true_positives = true_positives[indices]
# compute false positives and true positives
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
# compute recall and precision
recall = true_positives / num_annotations
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
# compute average precision
average_precision = compute_ap(recall, precision)
average_precisions[label] = average_precision
return average_precisions
def predict(self, image):
image_h, image_w, _ = image.shape
image = cv2.resize(image, (self.input_size, self.input_size))
image = self.feature_extractor.normalize(image)
input_image = image[:,:,::-1]
input_image = np.expand_dims(input_image, 0)
dummy_array = np.zeros((1,1,1,1,self.max_box_per_image,4))
netout = self.model.predict([input_image, dummy_array])[0]
boxes = decode_netout(netout, self.anchors, self.nb_class)
return boxes