-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheuler021.py
executable file
·29 lines (24 loc) · 1.06 KB
/
euler021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#!/usr/bin/python3
# -*- coding: utf-8 -*-
################################################################################
# Euler 21
# Amicable numbers
# Author: Eugene Kolo - 2014
# Contact: www.eugenekolo.com
# Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
# If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b
# are called amicable numbers.
# For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110;
# therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
# Evaluate the sum of all the amicable numbers under 10000.
################################################################################
from eulerlib import sumDivisors
def solve():
total = 0
for n in range(1,10000):
# Definition of an amicable number
if (n == sumDivisors(sumDivisors(n)) and sumDivisors(n) != n):
total += n
return total
if __name__ == '__main__':
print(solve())