-
Notifications
You must be signed in to change notification settings - Fork 0
/
made.py
323 lines (252 loc) · 13 KB
/
made.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# """
# Implements Masked AutoEncoder for Density Estimation, by Germain et al. 2015
# Re-implementation by Andrej Karpathy based on https://arxiv.org/abs/1502.03509
# """
# import numpy as np
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# import random
# # ------------------------------------------------------------------------------
# class MaskedLinear(nn.Linear):
# """ same as Linear except has a configurable mask on the weights """
# def __init__(self, in_features, out_features, bias=True):
# super().__init__(in_features, out_features, bias)
# self.register_buffer('mask', torch.ones(out_features, in_features))
# def set_mask(self, mask):
# self.mask.data.copy_(torch.from_numpy(mask.astype(np.uint8).T))
# def forward(self, input):
# return F.linear(input, self.mask * self.weight, self.bias)
# class MADE(nn.Module):
# def __init__(self, nin, hidden_sizes, nout, num_masks=1, natural_ordering=False, orderings=None):
# """
# nin: integer; number of inputs
# hidden sizes: a list of integers; number of units in hidden layers
# nout: integer; number of outputs, which usually collectively parameterize some kind of 1D distribution
# note: if nout is e.g. 2x larger than nin (perhaps the mean and std), then the first nin
# will be all the means and the second nin will be stds. i.e. output dimensions depend on the
# same input dimensions in "chunks" and should be carefully decoded downstream appropriately.
# the output of running the tests for this file makes this a bit more clear with examples.
# num_masks: can be used to train ensemble over orderings/connections
# natural_ordering: force natural ordering of dimensions, don't use random permutations
# """
# super().__init__()
# self.nin = nin
# self.nout = nout
# self.hidden_sizes = hidden_sizes
# assert self.nout % self.nin == 0, "nout must be integer multiple of nin"
# # define a simple MLP neural net
# self.net = []
# hs = [nin] + hidden_sizes + [nout]
# for h0,h1 in zip(hs, hs[1:]):
# self.net.extend([
# MaskedLinear(h0, h1),
# nn.ReLU(),
# ])
# self.net.pop() # pop the last ReLU for the output layer
# self.net = nn.Sequential(*self.net)
# # seeds for orders/connectivities of the model ensemble
# self.orderings = orderings
# self.natural_ordering = natural_ordering
# self.num_masks = num_masks
# self.mask_seed = 0 # for cycling through num_masks masks
# self.ordering_seed = 0
# self.m = {}
# self.update_ordering(init=True) # set up initial ordering
# self.update_masks() # builds the initial self.m connectivity
# # note, we could also precompute the masks and cache them, but this
# # could get memory expensive for large number of masks.
# def update_masks(self, reassign_masks=True):
# if 0 in self.m.keys() and self.num_masks == 1: return # only a single seed, skip for efficiency
# L = len(self.hidden_sizes)
# if reassign_masks:
# # fetch the next seed and construct a random stream
# rng = np.random.RandomState(self.mask_seed)
# self.mask_seed = (self.mask_seed + 1) % self.num_masks
# # sample the connectivity of all neurons
# for l in range(L):
# self.m[l] = rng.randint(self.m[l-1].min(), self.nin-1, size=self.hidden_sizes[l])
# # construct the mask matrices
# masks = [self.m[l-1][:,None] <= self.m[l][None,:] for l in range(L)]
# masks.append(self.m[L-1][:,None] < self.m[-1][None,:])
# # handle the case where nout = nin * k, for integer k > 1
# # if self.nout > self.nin:
# # k = int(self.nout / self.nin)
# # # replicate the mask across the other outputs
# # masks[-1] = np.concatenate([masks[-1]]*k, axis=1)
# # set the masks in all MaskedLinear layers
# layers = [l for l in self.net.modules() if isinstance(l, MaskedLinear)]
# for l,m in zip(layers, masks):
# l.set_mask(m)
# def update_ordering(self, init=False, use_ordering=None):
# L = len(self.hidden_sizes)
# self.m[-1] = self.orderings[self.ordering_seed]
# self.ordering_seed = (self.ordering_seed + 1) % len(self.orderings)
# if use_ordering is not None:
# self.m[-1] = use_ordering
# if not init:
# self.update_masks(reassign_masks=False)
# def forward(self, x):
# return self.net(x)
# # ------------------------------------------------------------------------------
# if __name__ == '__main__':
# from torch.autograd import Variable
# # run a quick and dirty test for the autoregressive property
# D = 10
# rng = np.random.RandomState(14)
# x = (rng.rand(1, D) > 0.5).astype(np.float32)
# configs = [
# (D, [], D, False), # test various hidden sizes
# (D, [200], D, False),
# (D, [200, 220], D, False),
# (D, [200, 220, 230], D, False),
# (D, [200, 220], D, True), # natural ordering test
# (D, [200, 220], 2*D, True), # test nout > nin
# (D, [200, 220], 3*D, False), # test nout > nin
# ]
# for nin, hiddens, nout, natural_ordering in configs:
# print("checking nin %d, hiddens %s, nout %d, natural %s" %
# (nin, hiddens, nout, natural_ordering))
# model = MADE(nin, hiddens, nout, natural_ordering=natural_ordering)
# # run backpropagation for each dimension to compute what other
# # dimensions it depends on.
# res = []
# for k in range(nout):
# xtr = Variable(torch.from_numpy(x), requires_grad=True)
# xtrhat = model(xtr)
# loss = xtrhat[0,k]
# loss.backward()
# depends = (xtr.grad[0].numpy() != 0).astype(np.uint8)
# depends_ix = list(np.where(depends)[0])
# isok = k % nin not in depends_ix
# res.append((len(depends_ix), k, depends_ix, isok))
# # pretty print the dependencies
# res.sort()
# for nl, k, ix, isok in res:
# print("output %2d depends on inputs: %30s : %s" % (k, ix, "OK" if isok else "NOTOK"))
###################################
#### CHECKPOINT VERSION
"""
Implements Masked AutoEncoder for Density Estimation, by Germain et al. 2015
Re-implementation by Andrej Karpathy based on https://arxiv.org/abs/1502.03509
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
# ------------------------------------------------------------------------------
class MaskedLinear(nn.Linear):
""" same as Linear except has a configurable mask on the weights """
def __init__(self, in_features, out_features, bias=True):
super().__init__(in_features, out_features, bias)
self.register_buffer('mask', torch.ones(out_features, in_features))
def set_mask(self, mask):
self.mask.data.copy_(torch.from_numpy(mask.astype(np.uint8).T))
def forward(self, input):
return F.linear(input, self.mask * self.weight, self.bias)
class MADE(nn.Module):
def __init__(self, nin, hidden_sizes, nout, num_masks=1, natural_ordering=False, orderings=None):
"""
nin: integer; number of inputs
hidden sizes: a list of integers; number of units in hidden layers
nout: integer; number of outputs, which usually collectively parameterize some kind of 1D distribution
note: if nout is e.g. 2x larger than nin (perhaps the mean and std), then the first nin
will be all the means and the second nin will be stds. i.e. output dimensions depend on the
same input dimensions in "chunks" and should be carefully decoded downstream appropriately.
the output of running the tests for this file makes this a bit more clear with examples.
num_masks: can be used to train ensemble over orderings/connections
natural_ordering: force natural ordering of dimensions, don't use random permutations
"""
super().__init__()
self.nin = nin
self.nout = nout
self.hidden_sizes = hidden_sizes
assert self.nout % self.nin == 0, "nout must be integer multiple of nin"
# define a simple MLP neural net
self.net = []
hs = [nin] + hidden_sizes + [nout]
for h0,h1 in zip(hs, hs[1:]):
self.net.extend([
MaskedLinear(h0, h1),
nn.ReLU(),
])
self.net.pop() # pop the last ReLU for the output layer
self.net = nn.Sequential(*self.net)
# seeds for orders/connectivities of the model ensemble
self.orderings = orderings
self.natural_ordering = natural_ordering
self.num_masks = num_masks
self.seed = 0 # for cycling through num_masks orderings
self.m = {}
self.update_masks(resample_hidden_masks=True) # builds the initial self.m connectivity
# note, we could also precompute the masks and cache them, but this
# could get memory expensive for large number of masks.
def update_masks(self, resample_hidden_masks=False, resample_ordering=True, use_ordering=None):
# if self.m and self.num_masks == 1: return # only a single seed, skip for efficiency
L = len(self.hidden_sizes)
# fetch the next seed and construct a random stream
rng = np.random.RandomState(self.seed)
self.seed = (self.seed + 1) % self.num_masks
# sample the order of the inputs and the connectivity of all neurons
if resample_ordering:
# self.m[-1][i] = j means that the ith pixel is in the jth postition of the ordering
if self.orderings is not None:
self.m[-1] = self.orderings[random.randint(0, len(self.orderings)-1)]
if use_ordering is not None:
self.m[-1] = use_ordering
else:
self.m[-1] = np.arange(self.nin) if self.natural_ordering else rng.permutation(self.nin)
if resample_hidden_masks:
for l in range(L):
self.m[l] = rng.randint(self.m[l-1].min(), self.nin-1, size=self.hidden_sizes[l])
# construct the mask matrices
masks = [self.m[l-1][:,None] <= self.m[l][None,:] for l in range(L)]
masks.append(self.m[L-1][:,None] < self.m[-1][None,:])
# handle the case where nout = nin * k, for integer k > 1
if self.nout > self.nin:
k = int(self.nout / self.nin)
# replicate the mask across the other outputs
masks[-1] = np.concatenate([masks[-1]]*k, axis=1)
# set the masks in all MaskedLinear layers
layers = [l for l in self.net.modules() if isinstance(l, MaskedLinear)]
for l,m in zip(layers, masks):
l.set_mask(m)
def forward(self, x):
return self.net(x)
# ------------------------------------------------------------------------------
if __name__ == '__main__':
from torch.autograd import Variable
# run a quick and dirty test for the autoregressive property
D = 10
rng = np.random.RandomState(14)
x = (rng.rand(1, D) > 0.5).astype(np.float32)
configs = [
(D, [], D, False), # test various hidden sizes
(D, [200], D, False),
(D, [200, 220], D, False),
(D, [200, 220, 230], D, False),
(D, [200, 220], D, True), # natural ordering test
(D, [200, 220], 2*D, True), # test nout > nin
(D, [200, 220], 3*D, False), # test nout > nin
]
for nin, hiddens, nout, natural_ordering in configs:
print("checking nin %d, hiddens %s, nout %d, natural %s" %
(nin, hiddens, nout, natural_ordering))
model = MADE(nin, hiddens, nout, natural_ordering=natural_ordering)
# run backpropagation for each dimension to compute what other
# dimensions it depends on.
res = []
for k in range(nout):
xtr = Variable(torch.from_numpy(x), requires_grad=True)
xtrhat = model(xtr)
loss = xtrhat[0,k]
loss.backward()
depends = (xtr.grad[0].numpy() != 0).astype(np.uint8)
depends_ix = list(np.where(depends)[0])
isok = k % nin not in depends_ix
res.append((len(depends_ix), k, depends_ix, isok))
# pretty print the dependencies
res.sort()
for nl, k, ix, isok in res:
print("output %2d depends on inputs: %30s : %s" % (k, ix, "OK" if isok else "NOTOK"))