forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compile_efficientnet.py
67 lines (63 loc) · 2.8 KB
/
compile_efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from models.efficientnet import EfficientNet
from tinygrad.tensor import Tensor
from tinygrad.nn.state import safe_save
from extra.utils import fetch
from extra.export_model import export_model
from tinygrad.helpers import getenv
import ast, os
if __name__ == "__main__":
model = EfficientNet(0)
model.load_from_pretrained()
mode = "clang" if getenv("CLANG", "") != "" else "webgpu" if getenv("WEBGPU", "") != "" else ""
prg, inp_size, out_size, state = export_model(model, Tensor.randn(1,3,224,224), mode)
if getenv("CLANG", "") == "":
safe_save(state, os.path.join(os.path.dirname(__file__), "net.safetensors"))
ext = "js" if getenv("WEBGPU", "") != "" else "json"
with open(os.path.join(os.path.dirname(__file__), f"net.{ext}"), "w") as text_file:
text_file.write(prg)
else:
cprog = [prg]
# image library!
cprog += ["#define STB_IMAGE_IMPLEMENTATION", fetch("https://raw.githubusercontent.com/nothings/stb/master/stb_image.h").decode('utf-8').replace("half", "_half")]
# imagenet labels, move to datasets?
lbls = fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt")
lbls = ast.literal_eval(lbls.decode('utf-8'))
lbls = ['"'+lbls[i]+'"' for i in range(1000)]
cprog.append(f"char *lbls[] = {{{','.join(lbls)}}};")
cprog.append(f"float input[{inp_size}];")
cprog.append(f"float outputs[{out_size}];")
# buffers (empty + weights)
cprog.append("""
int main(int argc, char* argv[]) {
int DEBUG = getenv("DEBUG") != NULL ? atoi(getenv("DEBUG")) : 0;
int X=0, Y=0, chan=0;
stbi_uc *image = (argc > 1) ? stbi_load(argv[1], &X, &Y, &chan, 3) : stbi_load_from_file(stdin, &X, &Y, &chan, 3);
assert(image != NULL);
if (DEBUG) printf("loaded image %dx%d channels %d\\n", X, Y, chan);
assert(chan == 3);
// resize to input[1,3,224,224] and rescale
for (int y = 0; y < 224; y++) {
for (int x = 0; x < 224; x++) {
// get sample position
int tx = (x/224.)*X;
int ty = (y/224.)*Y;
for (int c = 0; c < 3; c++) {
input[c*224*224 + y*224 + x] = (image[ty*X*chan + tx*chan + c] / 255.0 - 0.45) / 0.225;
}
}
}
net(input, outputs);
float best = -INFINITY;
int best_idx = -1;
for (int i = 0; i < 1000; i++) {
if (outputs[i] > best) {
best = outputs[i];
best_idx = i;
}
}
if (DEBUG) printf("category : %d (%s) with %f\\n", best_idx, lbls[best_idx], best);
else printf("%s\\n", lbls[best_idx]);
}""")
# CLANG=1 python3 examples/compile_efficientnet.py | clang -O2 -lm -x c - -o recognize && DEBUG=1 time ./recognize docs/showcase/stable_diffusion_by_tinygrad.jpg
# category : 281 (tabby, tabby cat) with 9.452788
print('\n'.join(cprog))