-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplayground.cpp
211 lines (175 loc) · 6.8 KB
/
playground.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include <cstdlib>
#include <cstdio>
#include <cassert>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include <iostream>
int f()
{
using namespace cute;
auto layout = Layout<Shape<Int<16>,_4>, Stride<_1,Int<16>>>{};
auto shape = Shape<Int<64>, Int<16>>{};
auto result = tile_to_shape(layout, shape);
std::cout << "tile_to_shape(" << layout << ", " << shape << ") => " << result << "\n";
return 0;
}
int g() {
using namespace cute;
auto layout = Layout<Shape<_2,_4,_3>, Stride<_4, _1, _8>>{};
auto B = Layout<Shape<_4>, Stride<_2>>{};
std::cout << layout.compose(B) << "\n";
std::cout << logical_divide(layout, B) << "\n";
return 0;
}
int h1() {
using namespace cute;
auto layout = Layout<Shape<_4, _2>, Stride<Int<1>, Int<16>>>{};
auto AtomLayoutMNK = Layout<Shape<_2,_2,_1>, Stride<_2,_1,_0>>{};
std::cout << zipped_product(layout, AtomLayoutMNK) << "\n";
std::cout << tiled_product(layout, AtomLayoutMNK) << "\n";
return 0;
}
int h() {
using namespace cute;
TiledMMA mma = make_tiled_mma(SM70_8x8x4_F32F16F16F32_NT{},
Layout<Shape <_2,_2>,
Stride<_2,_1>>{});
auto ref_C = Layout<Shape<Int<16>, Int<16>>, Stride<Int<1>, Int<16>>>{};
auto x = mma.thrfrg_C(ref_C);
std::cout << x << "\n";
return 0;
}
int h2() {
using namespace cute;
TiledMMA mma = make_tiled_mma(SM70_8x8x4_F32F16F16F32_NT{},
Layout<Shape <_2,_2>,
Stride<_2,_1>>{});
auto ref_C = Layout<Shape<Int<16>, Int<16>>, Stride<Int<1>, Int<16>>>{};
auto a_tile = make_tile(make_layout(Int<8>{}),
make_layout(Int<8>{}));
auto x = zipped_divide(ref_C, a_tile);
std::cout << x << "\n";
return 0;
}
int h5() {
using namespace cute;
auto l1 = Layout<Shape<Int<32>, Int<8>>>{};
auto l2 = Layout<Shape<Int<4>, Int<1>>>{};
auto rp = raked_product(l1, l2);
std::cout << "raked_product(" << l1 << "," << l2 << ") = "<< rp << "\n";
std::cout << coalesce(rp) << "\n";
std::cout << right_inverse(rp) << "\n";
std::cout << right_inverse(rp).with_shape(Shape<Int<256>, Int<4>>{}) << "\n";
return 0;
}
int h4() {
using namespace cute;
TiledCopy copyA = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, float>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 m-major
Layout<Shape< _4,_1>>{});// Val layout 4x1 m-major
auto x = typename decltype(copyA)::AtomLayoutSrc{};
auto y = typename decltype(copyA)::AtomLayoutDst{};
std::cout << "get_layoutS_TV() => " << copyA.get_layoutS_TV() << "\n";
return 0;
}
int h3() {
using namespace cute;
TiledCopy copyA = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, float>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 m-major
Layout<Shape< _4,_1>>{});// Val layout 4x1 m-major
auto x = typename decltype(copyA)::AtomLayoutSrc{};
auto ref_S = make_layout(make_shape(shape(typename decltype(copyA)::Tiler_MN{}), Int<1>{}));
std::cout << "ref_S => " << ref_S << "\n";
std::cout << "right_inverse(x).compose(x) => " << right_inverse(x).compose(x) << "\n";
auto y = copyA.tile2thrfrg(ref_S, right_inverse(x).compose(x));
std::cout << "copyA.tile2thrfrg(ref_S, right_inverse(x).compose(x)) => " << y << "\n";
return 0;
}
int h6() {
using namespace cute;
TiledCopy copyA = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, float>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 m-major
Layout<Shape< _4,_1>>{});// Val layout 4x1 m-major
auto x = typename decltype(copyA)::TiledLayout_TV{};
std::cout << zipped_divide(x, Shape<_1, _4>{}) << "\n";
return 0;
}
int h7() {
using namespace cute;
auto ref2trg = Layout<Shape<_1, _4>>{};
using AtomNumThr = _1;
using AtomNumVal = _4;
TiledCopy copyA = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, float>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 m-major
Layout<Shape< _4,_1>>{});// Val layout 4x1 m-major
using TiledLayout_TV = typename decltype(copyA)::TiledLayout_TV;
// Take the thrs/vals that the atom is interested in
// NOTE: Assumes the AtomNumThr are contiguous and identity within TiledThrID
auto atom_layout_TV = zipped_divide(TiledLayout_TV{}, make_shape(AtomNumThr{}, AtomNumVal{}));
// ((atom_tid,atom_val),(rest_tid,rest_val)) -> (m,n)
// Transform to the trg layout
auto trg_layout_TV = atom_layout_TV.compose(ref2trg, _);
// ((trg_tid,trg_val),(rest_tid,rest_val)) -> (m,n)
// Transform the thrs mode from thrid to thr_idx
// NOTE: Assumes the AtomNumThr are contiguous and identity within TiledThrID
auto thrval2mn = coalesce(zip(trg_layout_TV), Shape<_1,Shape<_1,_1>>{});
// ((trg_tid,rest_tid),(trg_val,rest_val)) -> (m,n)
std::cout << "thrval2mn => " << thrval2mn << "\n";
return 0;
}
int h8() {
using namespace cute;
auto block_shape = make_shape(Int<128>{}, Int<64>{});
auto tensor_layout = make_layout(make_shape(Int<128>{}, 512));
print(tiled_divide(tensor_layout, block_shape));
return 0;
}
int h9() {
using namespace cute;
using op = UniversalFMA<float, half_t, half_t>;
auto x = make_tiled_mma(op{}, Layout<Shape<_16, _16, _1>>{});
print(x);
return 0;
}
int h10() {
using namespace cute;
auto sA = make_layout(Shape<_128, _8>{});
auto a_tile = make_tile(make_layout(_1{}), make_layout(_1{}));
auto a_tensor = zipped_divide(sA, a_tile);
print("zipped_divide((128:8, col), <1, 1>) => "); print(a_tensor); print("\n");
auto thr_tile = make_tile(_, make_tile(_16{}, _1{}));
auto thr_tensor = zipped_divide(a_tensor, thr_tile);
print("zipped_divide(that, <_, <16, 1>>): => "); print(thr_tensor); print("\n");
print("partition_A indexes into this in the first mode"); print("\n");
return 0;
}
int h11() {
using namespace cute;
using uc_op = UniversalCopy<uint128_t>;
auto copyA = make_tiled_copy(Copy_Atom<uc_op, half_t>{}, Layout<Shape<_32,_8>>{}, Layout<Shape<_8,_1>>{});
print(copyA); print("\n");
return 0;
}
int h12() {
using namespace cute;
using my_op = SM70_8x8x4_F16F16F16F16_NT;
using atom = MMA_Atom<my_op>;
print(atom{});
return 0;
}
int h13() {
using namespace cute;
auto l1 = make_layout(make_shape(_4{}, _2{}, _1{}), make_stride(_1{}, _16{}, _0{}));
auto l2 = make_shape(_1{}, _1{}, _4{});
auto l3 = logical_product(l1, l2);
print(l3); print("\n");
return 0;
}
int main() {
using namespace cute;
using my_op = SM80_16x8x16_F16F16F16F16_TN;
auto my_mma = make_tiled_mma(my_op{}, make_layout(make_shape(_1{}, _1{})));
print_latex(my_mma); print("\n");
return 0;
}