-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd.cu
155 lines (130 loc) · 4.46 KB
/
d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <iostream>
#include <cassert>
#include <cmath>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
void matrix_multiply_cpu(const cute::half_t* A, const cute::half_t* B, cute::half_t* C, int m, int n, int k) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
cute::half_t sum = static_cast<cute::half_t>(0.0f);
for (int p = 0; p < k; ++p) {
sum += A[i * k + p] * B[j * k + p];
}
C[i * n + j] = sum;
}
}
}
bool areMatricesEqual(const cute::half_t* C1, const cute::half_t* C2, int m, int n, float tolerance = 1e-1f) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (std::fabs(static_cast<float>(C1[i * n + j]) - static_cast<float>(C2[i * n + j])) > tolerance) {
return false;
}
}
}
return true;
}
template <class TiledMma>
__global__ static
void
f(cute::half_t const *A,
cute::half_t const *B,
cute::half_t *C,
int k1,
TiledMma my_mma) {
using namespace cute;
int k = k1 * 16;
Tensor mA = make_tensor(make_gmem_ptr(A), make_layout(make_shape(_16{}, k), make_stride(k, _1{})));
Tensor mB = make_tensor(make_gmem_ptr(B), make_layout(make_shape(_8{}, k), make_stride(k, _1{})));
Tensor mC = make_tensor(make_gmem_ptr(C), make_layout(make_shape(_16{}, _8{}), make_stride(_8{}, _1{})));
auto thrmma = my_mma.get_slice(threadIdx.x);
// No need for gA, gB, or gC...only one CTA
// Our single CTA has blockIdx.x = 0, blockIdx.y = 0
auto cta_coord = make_coord(0, 0, _);
auto cta_tiler = make_shape(_16{}, _8{}, _16{});
Tensor gA = local_tile(mA, cta_tiler, cta_coord, Step<_1, X, _1>{});
Tensor gB = local_tile(mB, cta_tiler, cta_coord, Step<X, _1, _1>{});
Tensor tCgA = thrmma.partition_A(gA);
Tensor tCgB = thrmma.partition_B(gB);
Tensor tCmC = thrmma.partition_C(mC);
auto rC = thrmma.make_fragment_C(tCmC);
clear(rC);
auto rA = thrmma.make_fragment_A(tCgA(_, _, _, 0));
auto rB = thrmma.make_fragment_B(tCgB(_, _, _, 0));
#if 0
if (thread0()) {
print(my_mma);
print("mA : "); print(mA); print("\n");
print("mB : "); print(mB); print("\n");
print("mC : "); print(mC); print("\n");
print("gA : "); print(gA); print("\n");
print("gB : "); print(gB); print("\n");
print("tCgA : "); print(tCgA); print("\n");
print("tCgB : "); print(tCgB); print("\n");
print("tCmC : "); print(tCmC); print("\n");
print("rA : "); print(rA); print("\n");
print("rB : "); print(rB); print("\n");
print("rC : "); print(rC); print("\n");
}
#endif
#if 1
for (int p1 = 0; p1 < k1; ++p1) {
copy(tCgA(_, _, _, p1), rA);
copy(tCgB(_, _, _, p1), rB);
gemm(my_mma, rA, rB, rC);
}
copy(rC, tCmC);
#endif
return;
}
void printMatrix(const cute::half_t* data, int m, int n) {
std::cout << std::fixed << std::setprecision(4);
for (int i = 0; i < m; ++i) {
std::cout << "[ ";
for (int j = 0; j < n; ++j) {
std::cout << static_cast<float>(data[i * n + j]) << " ";
}
std::cout << "]" << std::endl;
}
}
int main() {
using namespace cute;
int Xm = 16;
int Xn = 8;
int Xk = 16;
int k1 = 7;
int m = Xm;
int n = Xn;
int k = Xk * k1;
using TA = half_t;
thrust::host_vector<TA> h_A(m*k);
thrust::host_vector<TA> h_B(n*k);
thrust::host_vector<TA> h_C(m*n);
for (int j = 0; j < m*k; ++j) h_A[j] = static_cast<TA>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < n*k; ++j) h_B[j] = static_cast<TA>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < m*n; ++j) h_C[j] = 0;
thrust::device_vector<TA> d_A = h_A;
thrust::device_vector<TA> d_B = h_B;
thrust::device_vector<TA> d_C = h_C;
using op = SM80_16x8x16_F16F16F16F16_TN;
auto tiled_mma = make_tiled_mma(op{}, make_layout(make_shape(_1{}, _1{}, _1{})));
dim3 dimGrid(1);
dim3 dimBlock(32);
f<<<dimGrid, dimBlock>>>(d_A.data().get(), d_B.data().get(), d_C.data().get(), k1, tiled_mma);
thrust::host_vector<TA> cute_result = d_C;
#if 1
matrix_multiply_cpu(h_A.data(), h_B.data(), h_C.data(), m, n, k);
#endif
#if 0
print("h_A : "); printMatrix(h_A.data(), m, k); print("\n\n");
print("h_B : "); printMatrix(h_B.data(), k, n); print("\n\n");
print("h_C : "); printMatrix(h_C.data(), m, n); print("\n\n");
print("cute_result : "); printMatrix(cute_result.data(), m, n); print("\n\n");
#endif
# if 1
assert(areMatricesEqual(cute_result.data(), h_C.data(), m, n));
std::cout << "Success!" << std::endl;
#endif
return 0;
}