-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2.cu
92 lines (78 loc) · 2.67 KB
/
a2.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <iostream>
#include <cassert>
#include <cmath>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include "e.h"
void matrix_multiply_cpu(const cute::half_t* A, const cute::half_t* B, cute::half_t* C, int m, int n, int k) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
cute::half_t sum = static_cast<cute::half_t>(0.0f);
for (int p = 0; p < k; ++p) {
sum += A[i * k + p] * B[j * k + p];
}
C[i * n + j] = sum;
}
}
}
bool areMatricesEqual(const cute::half_t* C1, const cute::half_t* C2, int m, int n, float tolerance = 1e-2f) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (std::fabs(static_cast<float>(C1[i * n + j]) - static_cast<float>(C2[i * n + j])) > tolerance) {
return false;
}
}
}
return true;
}
void printMatrix(const cute::half_t* data, int m, int n) {
std::cout << std::fixed << std::setprecision(4);
for (int i = 0; i < m; ++i) {
std::cout << "[ ";
for (int j = 0; j < n; ++j) {
std::cout << static_cast<float>(data[i * n + j]) << " ";
}
std::cout << "]" << std::endl;
}
}
int main() {
using namespace cute;
int m = 16;
int n = 8;
int k = 16;
using TA = half_t;
thrust::host_vector<TA> h_A(m*k);
thrust::host_vector<TA> h_B(k*n);
thrust::host_vector<TA> h_C(m*n);
for (int j = 0; j < m*k; ++j) h_A[j] = static_cast<TA>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < n*k; ++j) h_B[j] = static_cast<TA>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < m*n; ++j) h_C[j] = 0;
thrust::device_vector<TA> d_A = h_A;
thrust::device_vector<TA> d_B = h_B;
thrust::device_vector<TA> d_C = h_C;
using op = SM80_16x8x16_F16F16F16F16_TN;
auto tiled_mma = make_tiled_mma(op{}, make_layout(make_shape(_1{}, _1{}, _1{})));
dim3 dimGrid(1, 1);
dim3 dimBlock(32);
auto shape = make_shape(m, n, k);
auto dA = make_stride(k, _1{});
auto dB = make_stride(k, _1{});
auto dC = make_stride(n, _1{});
f<<<dimGrid, dimBlock>>>(d_A.data().get(), d_B.data().get(), d_C.data().get(), m, n, tiled_mma);
thrust::host_vector<TA> cute_result = d_C;
#if 1
matrix_multiply_cpu(h_A.data(), h_B.data(), h_C.data(), m, n, k);
#endif
#if 1
print("h_A : "); printMatrix(h_A.data(), m, k); print("\n\n");
print("h_B : "); printMatrix(h_B.data(), k, n); print("\n\n");
print("h_C : "); printMatrix(h_C.data(), m, n); print("\n\n");
print("cute_result : "); printMatrix(cute_result.data(), m, n); print("\n\n");
#endif
# if 1
assert(areMatricesEqual(cute_result.data(), h_C.data(), m, n));
std::cout << "Success!" << std::endl;
#endif
return 0;
}