-
Notifications
You must be signed in to change notification settings - Fork 172
/
Train_model_subpixel.py
252 lines (202 loc) · 8.63 KB
/
Train_model_subpixel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""script for subpixel experiment (not tested)
"""
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from tqdm import tqdm
from utils.loader import dataLoader, modelLoader, pretrainedLoader
import logging
from utils.tools import dict_update
from utils.utils import labels2Dto3D, flattenDetection, labels2Dto3D_flattened
from utils.utils import pltImshow, saveImg
from utils.utils import precisionRecall_torch
from utils.utils import save_checkpoint
from pathlib import Path
from Train_model_frontend import Train_model_frontend
class Train_model_subpixel(Train_model_frontend):
default_config = {
'train_iter': 170000,
'save_interval': 2000,
'tensorboard_interval': 200,
'model': {
'subpixel': {
'enable': False
}
}
}
def __init__(self, config, save_path=Path('.'), device='cpu', verbose=False):
print("using: Train_model_subpixel")
self.config = self.default_config
self.config = dict_update(self.config, config)
self.device=device
self.save_path = save_path
self.cell_size = 8
self.max_iter = config['train_iter']
self._train = True
self._eval = True
pass
def print(self):
print("hello")
def loadModel(self):
###### check!
model = self.config['model']['name']
params = self.config['model']['params']
print("model: ", model)
net = modelLoader(model=model, **params).to(self.device)
# net.init_
logging.info('=> setting adam solver')
# import torch.optim as optim
# optimizer = optim.Adam(net.parameters(), lr=self.config['model']['learning_rate'],
# betas=(0.9, 0.999))
optimizer = self.adamOptim(net, lr=self.config['model']['learning_rate'])
n_iter = 0
## load pretrained
if self.config['retrain'] == True:
logging.info("New model")
pass
else:
path = self.config['pretrained']
mode = '' if path[:-3] == '.pth' else 'full'
logging.info('load pretrained model from: %s', path)
net, optimizer, n_iter = pretrainedLoader(net, optimizer, n_iter, path, mode=mode, full_path=True)
logging.info('successfully load pretrained model from: %s', path)
def setIter(n_iter):
if self.config['reset_iter']:
logging.info("reset iterations to 0")
n_iter = 0
return n_iter
self.net = net
self.optimizer = optimizer
self.n_iter = setIter(n_iter)
pass
def train_val_sample(self, sample, n_iter=0, train=False):
task = 'train' if train else 'val'
tb_interval = self.config['tensorboard_interval']
losses, tb_imgs, tb_hist = {}, {}, {}
## get the inputs
# logging.info('get input img and label')
img, labels_2D, mask_2D = sample['image'], sample['labels_2D'], sample['valid_mask']
# img, labels = img.to(self.device), labels_2D.to(self.device)
labels_res = sample['labels_res']
# variables
batch_size, H, W = img.shape[0], img.shape[2], img.shape[3]
self.batch_size = batch_size
# print("batch_size: ", batch_size)
Hc = H // self.cell_size
Wc = W // self.cell_size
# zero the parameter gradients
self.optimizer.zero_grad()
# extract patches
# extract the patches from labels
label_idx = labels_2D[...].nonzero()
from utils.losses import extract_patches
patch_size = self.config['model']['params']['patch_size']
patches = extract_patches(label_idx.to(self.device), img.to(self.device),
patch_size=patch_size) # tensor [N, patch_size, patch_size]
# patches = extract_patches(label_idx.to(device), labels_2D.to(device), patch_size=15) # tensor [N, patch_size, patch_size]
# print("patches: ", patches.shape)
patch_channels = self.config['model']['params'].get('subpixel_channel', 1)
if patch_channels == 2:
patch_heat = extract_patches(label_idx.to(self.device), img.to(self.device),
patch_size=patch_size) # tensor [N, patch_size, patch_size]
def label_to_points(labels_res, points):
labels_res = labels_res.transpose(1,2).transpose(2,3).unsqueeze(1)
points_res = labels_res[points[:,0],points[:,1],points[:,2],points[:,3],:] # tensor [N, 2]
return points_res
points_res = label_to_points(labels_res, label_idx)
num_patches_max = 500
# feed into the network
pred_res = self.net(patches[:num_patches_max, ...].to(self.device)) # tensor [1, N, 2]
# loss function
def get_loss(points_res, pred_res):
loss = (points_res - pred_res)
loss = torch.norm(loss, p=2, dim=-1).mean()
return loss
loss = get_loss(points_res[:num_patches_max,...].to(self.device),
pred_res)
self.loss = loss
losses.update({'loss': loss})
tb_hist.update({'points_res_0': points_res[:,0]})
tb_hist.update({'points_res_1': points_res[:,1]})
tb_hist.update({'pred_res_0': pred_res[:,0]})
tb_hist.update({'pred_res_1': pred_res[:,1]})
tb_imgs.update({'patches': patches[:,...].unsqueeze(1)})
tb_imgs.update({'img': img})
# forward + backward + optimize
# if train:
# print("img: ", img.shape)
# outs, outs_warp = self.net(img.to(self.device)), self.net(img_warp.to(self.device), subpixel=self.subpixel)
# semi, coarse_desc = outs[0], outs[1]
# semi_warp, coarse_desc_warp = outs_warp[0], outs_warp[1]
# else:
# with torch.no_grad():
# outs, outs_warp = self.net(img.to(self.device)), self.net(img_warp.to(self.device), subpixel=self.subpixel)
# semi, coarse_desc = outs[0], outs[1]
# semi_warp, coarse_desc_warp = outs_warp[0], outs_warp[1]
# pass
# descriptor loss
losses.update({'loss': loss})
# print("losses: ", losses)
if train:
loss.backward()
self.optimizer.step()
self.tb_scalar_dict(losses, task)
if n_iter % tb_interval == 0 or task == 'val':
logging.info("current iteration: %d, tensorboard_interval: %d", n_iter, tb_interval)
self.tb_images_dict(task, tb_imgs, max_img=5)
self.tb_hist_dict(task, tb_hist)
return loss.item()
def tb_images_dict(self, task, tb_imgs, max_img=5):
for element in list(tb_imgs):
for idx in range(tb_imgs[element].shape[0]):
if idx >= max_img: break
self.writer.add_image(task + '-' + element + '/%d'%idx,
tb_imgs[element][idx,...], self.n_iter)
def tb_hist_dict(self, task, tb_dict):
for element in list(tb_dict):
self.writer.add_histogram(task + '-' + element,
tb_dict[element], self.n_iter)
pass
if __name__ == '__main__':
filename = 'configs/magicpoint_shapes_subpix.yaml'
import yaml
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_tensor_type(torch.FloatTensor)
with open(filename, 'r') as f:
config = yaml.load(f)
from utils.loader import dataLoader as dataLoader
# data = dataLoader(config, dataset='hpatches')
task = config['data']['dataset']
data = dataLoader(config, dataset=task, warp_input=True)
# test_set, test_loader = data['test_set'], data['test_loader']
train_loader, val_loader = data['train_loader'], data['val_loader']
train_agent = Train_model_subpixel(config, device=device)
train_agent.print()
# writer from tensorboard
from tensorboardX import SummaryWriter
writer = SummaryWriter()
train_agent.writer = writer
# feed the data into the agent
train_agent.train_loader = train_loader
train_agent.val_loader = val_loader
train_agent.loadModel()
train_agent.dataParallel()
try:
# train function takes care of training and evaluation
train_agent.train()
except KeyboardInterrupt:
print ("press ctrl + c, save model!")
train_agent.saveModel()
pass
# try:
# # train function takes care of training and evaluation
# train_agent.train()
# except KeyboardInterrupt:
# print ("press ctrl + c, save model!")
# train_agent.saveModel()
# pass