-
Notifications
You must be signed in to change notification settings - Fork 4
/
experiment_base.sh
executable file
·107 lines (99 loc) · 3.35 KB
/
experiment_base.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#! /bin/bash
# parser.add_argument('--prefix', default="test", type=str,
# help="Prefix for naming the log/model.")
# parser.add_argument('--batch-size', default=64, type=int,
# help="Batch size.")
# parser.add_argument('--epoches', default=30, type=int,
# help="Number of epoches.")
# parser.add_argument('--data-size', default=30000, type=int,
# help="Dataset size as number of (img1, img2, fmat) tuple")
# parser.add_argument('--l1-weight', default=10., type=float,
# help="Weight for L1-loss")
# parser.add_argument('--l2-weight', default=1., type=float,
# help='Weight for L2-loss')
# parser.add_argument('--lr', default=0.001, type=float,
# help='Learning rate')
# parser.add_argument('--use-gc', default=True, type=bool,
# help='Use gradient clipping.')
# parser.add_argument('--norm-method', default='last', type=str,
# help='Normalization method: (norm)|(abs)|(last)')
# parser.add_argument('--resume', default=None, type=str,
# help='Resuming model')
# parser.add_argument('--use-coor', default=False, type=bool,
# help='Whether using coordinate as input')
# parser.add_argument('--use-pos-index', default=False, type=bool,
# help='Whether using pos index')
# parser.add_argument('--use-reconstruction', default=False, type=bool,
# help='Whether using reconstruction layer')
# Default Model
# single_fnet_default_time1513233124
# python single_fnet.py \
# --prefix=default \
# --batch-size=64 \
# --epoches=20 \
# --data-size=30000 \
# --l1-weight=10 \
# --l2-weight=1. \
# --lr=0.001 \
# --norm-method=last \
# --use-gc true
# Default model with structure
# python single_fnet.py \
# --prefix=default_structure \
# --batch-size=64 \
# --epoches=20 \
# --data-size=30000 \
# --l1-weight=10 \
# --l2-weight=1. \
# --lr=0.001 \
# --norm-method=last \
# --use-gc true \
# --use-reconstruction true
# Default but using L_2 norm to normalize the output
# python single_fnet.py \
# --prefix=default_l2norm \
# --batch-size=64 \
# --epoches=20 \
# --data-size=30000 \
# --l1-weight=10 \
# --l2-weight=1. \
# --lr=0.001 \
# --norm-method=norm \
# --use-gc true
# Default model with structure and l2 norm to normalize
# python single_fnet.py \
# --prefix=default_structure_l2norm \
# --batch-size=64 \
# --epoches=20 \
# --data-size=30000 \
# --l1-weight=10 \
# --l2-weight=1. \
# --lr=0.001 \
# --norm-method=norm \
# --use-gc true \
# --use-reconstruction true
# Default but with max-abs normalization and abs norm
# python single_fnet.py \
# --prefix=default_absnorm \
# --batch-size=64 \
# --epoches=20 \
# --data-size=30000 \
# --l1-weight=10 \
# --l2-weight=1. \
# --lr=0.001 \
# --norm-method=abs \
# --use-gc true
# Default but with structural prediction and abs norm
python single_fnet.py \
--gpu=0 \
--prefix=default_structure_absnorm \
--batch-size=4 \
--epoches=20 \
--data-size=30000 \
--l1-weight=10 \
--l2-weight=1. \
--lr=0.001 \
--norm-method=abs \
--use-gc true \
--use-reconstruction true \
--dataset=kitti