-
Notifications
You must be signed in to change notification settings - Fork 0
/
VectorSpaceCheck.cpp
216 lines (170 loc) · 6.26 KB
/
VectorSpaceCheck.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include "VectorSpaceCheck.h"
#include "SymbCheck_Real.h"
#include <iostream>
/*
Axiom 1: x + y == y + x, for x and y in the space
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom1() const {
// The following comments apply to all functions in this file:
// SymbCheck_Real v1s[len] --> create an array of type SymbCheck_Real of the same dimension as the space
// ... these values will then be used to initialize the elements of vector v1
// The for loop: initialize each element in the array of SymbCheck_Real to one value represented by consecutive
// letters, starting at 'A' (done through conversion of integers as ASCII values to their corresponding characters)
// Then, build LS (left-side) and RS (right-side) of the identity, and check for equality
// NOTE: all addition/multiplication of vector elements, in addition to the equality check (LS == RS) is handled
// by the mechanics in the SymbCheck_Real class and it implementation
SymbCheck_Real v1s[len], v2s[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
v1s[i] = SymbCheck_Real(static_cast<char>(curChar));
v2s[i] = SymbCheck_Real(static_cast<char>(curChar + 1));
curChar += 2;
}
VS v1(v1s), v2(v2s);
VS LS = v1 + v2;
VS RS = v2 + v1;
return (LS == RS);
}
/*
Axiom 2: (x + y) + z == x + (y + z), for x, y, and z in the space
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom2() const {
SymbCheck_Real v1s[len], v2s[len], v3s[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
v1s[i] = SymbCheck_Real(static_cast<char>(curChar));
v2s[i] = SymbCheck_Real(static_cast<char>(curChar + 1));
v3s[i] = SymbCheck_Real(static_cast<char>(curChar + 2));
curChar += 3;
}
VS v1(v1s), v2(v2s), v3(v3s);
VS LS = (v1 + v2) + v3;
VS RS = v1 + (v2 + v3);
return (LS == RS);
}
/*
Axiom 3: The zero vector exists such that x + 0 = x for all x in the space
Here: find the 0 vector by x + (-1) * x
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom3() const {
SymbCheck_Real vs[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
vs[i] = SymbCheck_Real(static_cast<char>(curChar));
++ curChar;
}
VS v(vs);
VS z = v + v * (-1); // if 0 exists, then x + (-x) = 0
// the zero vector is also unique (simple algebraic proof)
// so, the zero vector must be an actual value, and not contain any variables
bool isInt = true;
for (int i = 0; i < len; ++ i)
isInt = (isInt && z[i].isValue()); // check to make sure every element in 0 is a value
return isInt;
}
/*
Return the symbolic representation of the zero vector for this space.
Here: find the 0 vector by x + (-1) * x
Note: if axiom 3 is false (i.e. if there is no 0 vector), then, return NULL
*/
template <class VS, const int len> const VS VectorSpaceCheck<VS, len>::getZeroVector() const {
if (!checkAxiom3())
return NULL; // if the 0 vector does not exist, return NULL
SymbCheck_Real vs[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
vs[i] = SymbCheck_Real(static_cast<char>(curChar));
++ curChar;
}
VS v(vs);
return v + v * (-1);
}
/*
Axiom 4: For every x belongs to the space, there exists y such that x + y = 0
Here take y = (-1) * x
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom4() const {
SymbCheck_Real vs[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
vs[i] = SymbCheck_Real(static_cast<char>(curChar));
++ curChar;
}
VS v(vs);
return (v + v * (-1) == getZeroVector());
}
/*
Axiom 5: s * (x + y) = s * x + s * y, for x, y in the space, and scalar s
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom5() const {
SymbCheck_Real v1s[len], v2s[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
v1s[i] = SymbCheck_Real(static_cast<char>(curChar));
v2s[i] = SymbCheck_Real(static_cast<char>(curChar + 1));
curChar += 2;
}
SymbCheck_Real s(static_cast<char>(curChar));
VS v1(v1s), v2(v2s);
VS LS = (v1 + v2) * s;
VS RS = v1 * s + v2 * s;
return (LS == RS);
}
/*
Axiom 6: (a + b) * x = a * x + b * x, for x in the space, and scalars a and b
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom6() const {
SymbCheck_Real vs[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
vs[i] = SymbCheck_Real(static_cast<char>(curChar));
++ curChar;
}
SymbCheck_Real s1(static_cast<char>(curChar)), s2(static_cast<char>(++ curChar));
VS v(vs);
VS LS = v * (s1 + s2);
VS RS = v * s1 + v * s2;
return (LS == RS);
}
/*
Axiom 7: (a * b) * x = a * (b * x), for x in the space, and scalars a and b
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom7() const {
SymbCheck_Real vs[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
vs[i] = SymbCheck_Real(static_cast<char>(curChar));
++ curChar;
}
SymbCheck_Real s1(static_cast<char>(curChar)), s2(static_cast<char>(++ curChar));
VS v(vs);
VS LS = v * (s1 * s2);
VS RS = (v * s1) * s2;
return (LS == RS);
}
/*
Axiom 8: 1 * x = x for all x in the space
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAxiom8() const {
SymbCheck_Real vs[len];
int curChar = 65;
for (int i = 0; i < len; ++ i) {
vs[i] = SymbCheck_Real(static_cast<char>(curChar));
++ curChar;
}
SymbCheck_Real s1(1);
VS v(vs);
VS LS = v * s1;
VS RS = v;
return (LS == RS);
}
/*
Check all 8 axioms.
This function returns true if all axioms are true (i.e. if the space is a vector space),
and false otherwise.
Note: when the closure axioms are implemented, they will also be checked in this function.
*/
template <class VS, const int len> bool VectorSpaceCheck<VS, len>::checkAllAxioms() const {
return checkAxiom1() && checkAxiom2() && checkAxiom3() && checkAxiom4() && checkAxiom5()
&& checkAxiom6() && checkAxiom7() && checkAxiom8();
}