forked from travisbrady/haskell-tsp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGA.hs
141 lines (119 loc) · 4.68 KB
/
GA.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
{-# LANGUAGE BangPatterns #-}
module Main where
import qualified Data.Map as M
import Data.Map ((!))
import Control.Monad (liftM, forM_, forM, mapM)
import System.Random (randomRIO, randomR, mkStdGen)
import Data.Maybe (catMaybes, fromJust)
import Data.List ((!!), minimum, maximum, elemIndex, elem, (\\), nub, delete, sort, minimumBy, sortBy)
import Shuffle
import Util (getData, getOptTour, dumpTour)
generations = 50
npergen = 1000
mutProb :: Float
mutProb = 0.10
crossProb :: Float
crossProb = 0.75
computeDistanceMap :: [(Int, Float, Float)] -> M.Map (Int, Int) Int
computeDistanceMap cities = M.fromList [((fst3 x, fst3 y), x `dist` y) | x <- cities, y <- cities]
where dist (c1, x1, y1) (c2, x2, y2) = round $ sqrt ((x1-x2)^2 + (y1-y2)^2)
fst3 (x,y,z) = x
tourDistance :: (Ord a1, Num a) => M.Map (a1, a1) a -> [a1] -> a
tourDistance distMap tour = sum . catMaybes . map gtr $ selfZip tour
where gtr k = M.lookup k distMap
selfZip lst = zip lst (tail lst)
tdo distMap [] = 0
tdo distMap tour = td tour 0
where td [one] !total = total
td (x:y:rest) !total = td (y:rest) (total + (distMap ! (x, y)))
randomOf :: [a] -> IO a
randomOf xs = (xs!!) `liftM` randomRIO (0, length xs-1)
tournament :: (Ord a1, Ord t, Num a1, Num a, Enum a) =>
M.Map (t, t) a1 -> a -> [[t]] -> IO [t]
tournament distMap n tours = do
players <- mapM (\x -> randomOf tours) [1..n]
let dists = map (tdo distMap) players
let winner = head . sort $ zip dists players
return (snd winner)
makeTours :: (Num a, Enum a) => a -> Int -> IO [[a]]
makeTours ncities ntours = do
shuffd <- mapM shuffle $ replicate ntours [2..ncities]
let ret = map (\x -> 1:x ++ [1]) shuffd
return ret
getNextCity :: (Eq a) => [a] -> a -> a
getNextCity tour city = tour!!((fromJust $ elemIndex city tour)+1)
getDM = computeDistanceMap `liftM` getData
greedyCross :: (Num a) =>
(a -> t -> t1 -> [a] -> a) -> t -> t1 -> [a] -> [a] -> [a]
greedyCross chooser mom dad notPicked [] = greedyCross chooser mom dad notPicked [1]
greedyCross chooser mom dad [last] !acc = (1:last:acc)
greedyCross chooser mom dad notPicked !acc = (greedyCross chooser mom dad (delete theChosen notPicked) newAcc)
where city = head acc
theChosen = chooser city mom dad notPicked
newAcc = theChosen:acc
chooseOne distMap city mom dad notPicked = choose
where mnext = getNextCity mom city
dnext = getNextCity dad city
mdist = distMap ! (city, mnext)
ddist = distMap ! (city, dnext)
choose = case mdist <= ddist && mnext `elem` notPicked of
True -> mnext
False -> case ddist <= mdist && dnext `elem` notPicked of
True -> dnext
False -> notPicked!!0
oneOne :: [Int]
oneOne = [1]
noOnes lst = (nub lst)\\oneOne
maybeCross chooser mtx tour dm pop = do
crossRoll <- randomRIO (0.0, 1.0) :: IO Float
case crossRoll < crossProb of
True -> do
dad <- mtx pop
let kid = greedyCross chooser tour dad (noOnes tour) []
return kid
False -> return tour
mutate dm tour = do
mutRoll <- randomRIO (0.0, 1.0) :: IO Float
case mutRoll < mutProb of
True -> twoOpt dm tour
False -> return tour
genGen chooser mtx pop dm i end acc = do
mom <- mtx pop
thisTour <- maybeCross chooser mtx mom dm pop
muted <- mutate dm thisTour
case i == end of
True -> return acc
False -> genGen chooser mtx pop dm (i+1) end (thisTour:acc)
twoOpt :: (Ord a, Num a1, Ord a1) => M.Map (a, a) a1 -> [a] -> IO [a]
twoOpt dm tour = do
ai <- randomRIO (1, length tour - 2)
bi <- randomRIO (1, length tour - 2)
let [si, ei] = sort [ai, bi]
let start = take si tour
let mid = take (ei - si) $ drop si tour
let end = drop ei tour
let done = start ++ (reverse mid) ++ end
case (tourDistance dm done) `compare` (tourDistance dm tour) of
LT -> twoOpt dm done
_ -> return tour
echo dists i = do
if i `mod` 10 == 0
then print (minimum dists)
else putStr "."
keepOn chooser mtx pop dm generations = do
let best = take 5 $ sortBy (\x y -> compare (tdo dm x) (tdo dm y)) pop
ng <- genGen chooser mtx pop dm 0 npergen best
let dists = map (tdo dm) ng
echo dists generations
case generations == 0 of
True -> return (head best)
False -> keepOn chooser mtx ng dm (generations-1)
main = do
dm <- getDM
pop <- makeTours 51 15000
let chooser = chooseOne dm
let mtx = tournament dm 2
best <- keepOn chooser mtx pop dm generations
let bestDist = tourDistance dm best
dumpTour best ("best_" ++ (show bestDist) ++ ".tour")
return ()