-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathfeatureSelection.py
71 lines (67 loc) · 3.98 KB
/
featureSelection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 26 16:35:42 2019
@author: ELİF NUR
"""
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectKBest
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import RandomForestClassifier
def correlationSelection(X,y,featureList,LabelColumnName,dataset,featureNumber):#This method makes the feature selection by correlation calculation
corrmat = dataset.corr() #corr() calculates the correlation.
top_corr_features = corrmat.index
plt.figure(figsize=(77,77))
g=sns.heatmap(dataset[top_corr_features].corr(),annot=True,cmap="RdYlGn")
corr_=corrmat.iloc[78,:]
corr_scores=corr_.tolist()
unsorted_scores=list(zip(featureList, corr_scores))
featureScoreDataFrame= pd.DataFrame(unsorted_scores, columns = ['Özellik', 'Skor']).sort_values(by = 'Skor', ascending = False)
featureNumber=featureNumber+1
selectedFeature=featureScoreDataFrame.head(featureNumber).sort_values(by = 'Skor')['Özellik'].tolist()
seriesFeature=pd.Series(featureScoreDataFrame['Skor'].values, featureScoreDataFrame['Özellik'].values)
plt.figure(figsize=(16,16))
seriesFeature.nlargest(77).plot(kind='barh')
plt.show()
featureDataFrame=dataset.loc[:,selectedFeature]
return featureDataFrame
def univariateSelection(X,y,featureList,LabelColumnName,dataset,featureNumber):#this method selects the feature with Anova-F
model=SelectKBest(k = 'all')
model.fit(X,y)
unsorted_scores = list(zip(featureList[1:], model.scores_))
featureScoreDataFrame=pd.DataFrame(unsorted_scores, columns = ['Özellik', 'Skor']).sort_values(by = 'Skor', ascending = False)
selectedFeature=featureScoreDataFrame.head(featureNumber)['Özellik'].tolist() + [LabelColumnName]
featureDataFrame=dataset.loc[:,selectedFeature]
seriesFeature=pd.Series(featureScoreDataFrame['Skor'].values, featureScoreDataFrame['Özellik'].values)
plt.figure(figsize=(16,16))
seriesFeature.nlargest(77).plot(kind='barh')
plt.show()
return featureScoreDataFrame,featureDataFrame
def randomForestSelection(X,y,featureList,LabelColumnName,dataset, featureNumber):#this method selects the feature with random forest
model=RandomForestClassifier(n_estimators=20)
model.fit(X,y)
importances = list(model.feature_importances_)
featureImportances = [(feature, round(importance, 4)) for feature, importance in zip(featureList, importances)]
featureImportances= sorted(featureImportances, key = lambda x: x[1], reverse = True)
unsorted_scores = list(zip(featureList, model.feature_importances_))
featureScoreDataFrame=pd.DataFrame(unsorted_scores, columns = ['Özellik', 'Skor']).sort_values(by = 'Skor', ascending = False)
selectedFeature=featureScoreDataFrame.head(featureNumber)['Özellik'].tolist() + [LabelColumnName]
featureDataFrame=dataset.loc[:,selectedFeature]
seriesFeature=pd.Series(model.feature_importances_, index=dataset.drop([LabelColumnName],axis=1).columns)
plt.figure(figsize=(16,16))
seriesFeature.nlargest(77).plot(kind='barh')
plt.show()
return featureScoreDataFrame,featureDataFrame
def extraTreesSelection(X,y,featureList,LabelColumnName,dataset,featureNumber): #this method selects the feature with Extra Trees
model=ExtraTreesClassifier(n_estimators=250,random_state=0)
model.fit(X,y)
seriesFeature=pd.Series(model.feature_importances_, index=featureList)
plt.figure(figsize=(16,16))
seriesFeature.nlargest(77).plot(kind='barh')
plt.show()
unsorted_scores = list(zip(featureList, model.feature_importances_))
featureScoreDataFrame=pd.DataFrame(unsorted_scores, columns = ['Özellik', 'Skor']).sort_values(by = 'Skor', ascending = False)
selectedFeature=featureScoreDataFrame.head(featureNumber)['Özellik'].tolist() + [LabelColumnName]
featureDataFrame=dataset.loc[:,selectedFeature]
return featureScoreDataFrame,featureDataFrame