forked from dbt-ethz/mola
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh_subdivision.py
523 lines (469 loc) · 17.7 KB
/
mesh_subdivision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
from __future__ import division
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = ['Benjamin Dillenburger','Demetris Shammas','Mathias Bernhard']
__copyright__ = 'Copyright 2019 / Digital Building Technologies DBT / ETH Zurich'
__license__ = 'MIT License'
__email__ = ['<[email protected]>']
from mola.core_mesh import Mesh
from mola.core_vertex import Vertex
from mola.core_face import Face
from mola import utils_face
from mola import utils_vertex
import copy
import math
def _collect_new_faces(mesh):
newMesh=Mesh()
for face in mesh.faces:
v1 = face.vertices[-2]
v2 = face.vertices[-1]
for v3 in face.vertices:
edge1 = mesh.edge_adjacent_to_vertices(v1,v2)
edge2 = mesh.edge_adjacent_to_vertices(v2,v3)
if (edge1 != None) and (edge2!= None):
newFace = Face([edge1.vertex, v2.vertex, edge2.vertex, face.vertex])
newFace.color = face.color
newFace.group = face.group
newMesh.faces.append(newFace)
v1 = v2
v2 = v3
newMesh.update_topology()
return newMesh
def subdivide_mesh(mesh,values=[]):
for face in mesh.faces:
face.vertex=utils_face.center(face)
for edge in mesh.edges:
edge.vertex = edge.center()
for vertex in mesh.vertices:
vertex.vertex = Vertex(vertex.x,vertex.y,vertex.z)
if len(values)>0:
_translate_face_vertices(mesh,values)
return _collect_new_faces(mesh)
def _catmullVertices(mesh):
for face in mesh.faces:
face.vertex = face.center()
for edge in mesh.edges:
if edge.face1 == None or edge.face2 == None:
edge.v1.fix = True
edge.v2.fix = True
edge.vertex = edge.center()
else:
vsum = Vertex()
nElements = 2
vsum = utils_vertex.vertex_add(vsum, edge.v1)
vsum = utils_vertex.vertex_add(vsum, edge.v2)
if edge.face1 != None:
vsum = utils_vertex.vertex_add(vsum, edge.face1.vertex)
nElements += 1
if edge.face2 != None:
vsum = utils_vertex.vertex_add(vsum, edge.face2.vertex)
nElements += 1
vsum = utils_vertex.vertex_divide(vsum, nElements)
edge.vertex = vsum
if edge.v1.fix and edge.v2.fix:
edge.vertex.fix = True
for vertex in mesh.vertices:
if vertex.fix:
vertex.vertex = copy.copy(vertex)
else:
averageFaces = Vertex()
averageEdges = Vertex()
nEdges = len(vertex.edges)
for edge in vertex.edges:
face = edge.face1
if edge.v2 is vertex:
face = edge.face2
if face != None:
averageFaces = utils_vertex.vertex_add(averageFaces, face.vertex)
averageEdges=utils_vertex.vertex_add(averageEdges,edge.center())
averageEdges = utils_vertex.vertex_scale(averageEdges, 2.0/nEdges)
averageFaces = utils_vertex.vertex_scale(averageFaces, 1.0/nEdges)
v = Vertex(vertex.x, vertex.y, vertex.z)
v = utils_vertex.vertex_scale(v,nEdges-3)
v = utils_vertex.vertex_add(v,averageFaces)
v = utils_vertex.vertex_add(v,averageEdges)
v = utils_vertex.vertex_scale(v,1.0/nEdges)
vertex.vertex = v
def _translate_face_vertices(mesh,values):
for face,value in zip(mesh.faces, values):
normal=utils_face.face_normal(face)
normal.scale(value)
face.vertex.add(normal)
def subdivide_mesh_catmull(mesh, values=[]):
_catmullVertices(mesh)
if len(values)>0:
_translate_face_vertices(mesh,values)
return _collect_new_faces(mesh)
def subdivide_face_split_grid(face,nU,nV):
"""
splits a triangle, quad or a rectangle into a regular grid
"""
if len(face.vertices) > 4:
print('too many vertices')
return face
if len(face.vertices) == 4:
vsU1 = _vertices_between(face.vertices[0], face.vertices[1], nU)
vsU2 = _vertices_between(face.vertices[3], face.vertices[2], nU)
gridVertices = []
for u in range(len(vsU1)):
gridVertices.append(_vertices_between(vsU1[u], vsU2[u], nV))
faces = []
for u in range(len(vsU1) - 1):
vs1 = gridVertices[u]
vs2 = gridVertices[u + 1]
for v in range(len(vs1) - 1):
#f = Face([vs1[v], vs1[v + 1], vs2[v + 1], vs2[v]])
f = Face([vs1[v], vs2[v], vs2[v + 1], vs1[v + 1]])
utils_face.face_copy_properties(face, f)
faces.append(f)
return faces
if len(face.vertices) == 3:
vsU1 = _vertices_between(face.vertices[0], face.vertices[1], nU)
vsU2 = _vertices_between(face.vertices[0], face.vertices[2], nU)
gridVertices = []
for u in range(1, len(vsU1)):
gridVertices.append(_vertices_between(vsU1[u], vsU2[u], nV))
faces = []
# triangles
v0 = face.vertices[0]
vs1 = gridVertices[0]
for v in range(len(vs1) - 1):
f = Face([v0,vs1[v],vs1[v + 1]])
utils_face.face_copy_properties(face, f)
faces.append(f)
for u in range(len(gridVertices) - 1):
vs1 = gridVertices[u]
vs2 = gridVertices[u + 1]
for v in range(len(vs1) - 1):
f = Face([vs1[v],vs1[v + 1], vs2[v + 1], vs2[v]])
utils_face.face_copy_properties(face, f)
faces.append(f)
return faces
def _vertices_between(v1,v2,n):
row = []
deltaV = utils_vertex.vertex_subtract(v2, v1)
deltaV = utils_vertex.vertex_divide(deltaV, n)
for i in range(n):
addV = utils_vertex.vertex_scale(deltaV, i)
row.append(utils_vertex.vertex_add(addV, v1))
row.append(v2)
return row
def subdivide_face_split_rel_free_quad(face, indexEdge, split1, split2):
"""
Splits a quad in two new quads through the points specified
by relative position along the edge.
Arguments:
----------
face : mola.core.Face
The face to be extruded
indexEdge : int
direction of split, 0: 0->2, 1: 1->3
split1, split2 : float
relative position of split on each edge (0..1)
"""
# only works with quads, therefore return original face if triangular
if len(face.vertices) != 4:
return face
# constrain indexEdge to be either 0 or 1
indexEdge = indexEdge%2
indexEdge1 = (indexEdge + 1) % len(face.vertices)
indexEdge2 = (indexEdge + 2) % len(face.vertices)
indexEdge3 = (indexEdge + 3) % len(face.vertices)
p1 = utils_vertex.vertex_between_rel(face.vertices[indexEdge], face.vertices[indexEdge1], split1)
p2 = utils_vertex.vertex_between_rel(face.vertices[indexEdge2 ], face.vertices[indexEdge3], split2)
faces = []
if indexEdge == 0:
f1 = Face([face.vertices[0], p1, p2, face.vertices[3]])
f2 = Face([p1, face.vertices[1], face.vertices[2], p2])
utils_face.face_copy_properties(face, f1)
utils_face.face_copy_properties(face, f2)
faces.extend([f1, f2])
elif indexEdge == 1:
f1 = Face([face.vertices[0], face.vertices[1], p1, p2])
f2 = Face([p2, p1, face.vertices[2], face.vertices[3]])
utils_face.face_copy_properties(face,f1)
utils_face.face_copy_properties(face,f2)
faces.extend([f1, f2])
return faces
def subdivide_face_extrude(face, height=0.0, capBottom=False, capTop=True):
"""
Extrudes the face straight by distance height.
Arguments:
----------
face : mola.core.Face
The face to be extruded
height : float
The extrusion distance, default 0
capBottom : bool
Toggle if bottom face (original face) should be created, default False
capTop : bool
Toggle if top face (extrusion face) should be created, default True
"""
normal=utils_face.face_normal(face)
normal=utils_vertex.vertex_scale(normal,height)
# calculate vertices
new_vertices=[]
for i in range(len(face.vertices)):
new_vertices.append(utils_vertex.vertex_add(face.vertices[i], normal))
# faces
new_faces=[]
if capBottom:
new_faces.append(face)
for i in range(len(face.vertices)):
i2=i+1
if i2>=len(face.vertices):
i2=0
v0=face.vertices[i]
v1=face.vertices[i2]
v2=new_vertices[i2]
v3=new_vertices[i]
new_faces.append(Face([v0,v1,v2,v3]))
if capTop:
new_faces.append(Face(new_vertices))
for new_face in new_faces:
utils_face.face_copy_properties(face,new_face)
return new_faces
def subdivide_mesh_extrude_tapered(mesh,heights,fractions,doCaps):
new_mesh = Mesh()
for face,height,fraction,doCap in zip(mesh.faces,heights,fractions,doCaps):
new_mesh.faces.extend(subdivide_face_extrude_tapered(face,height,fraction,doCap))
new_mesh.update_topology()
return new_mesh
def subdivide_face_extrude_tapered(face, height=0.0, fraction=0.5,doCap=True):
"""
Extrudes the face tapered like a window by creating an
offset face and quads between every original edge and the
corresponding new edge.
Arguments:
----------
face : mola.core.Face
The face to be extruded
height : float
The distance of the new face to the original face, default 0
fraction : float
The relative offset distance, 0: original vertex, 1: center point
default 0.5 (halfway)
"""
center_vertex = utils_face.face_center(face)
normal = utils_face.face_normal(face)
scaled_normal = utils_vertex.vertex_scale(normal, height)
# calculate new vertex positions
new_vertices = []
for i in range(len(face.vertices)):
n1 = face.vertices[i]
betw = utils_vertex.vertex_subtract(center_vertex, n1)
betw = utils_vertex.vertex_scale(betw, fraction)
nn = utils_vertex.vertex_add(n1, betw)
nn = utils_vertex.vertex_add(nn, scaled_normal)
new_vertices.append(nn)
new_faces = []
# create the quads along the edges
num = len(face.vertices)
for i in range(num):
n1 = face.vertices[i]
n2 = face.vertices[(i + 1) % num]
n3 = new_vertices[(i + 1) % num]
n4 = new_vertices[i]
new_face = Face([n1,n2,n3,n4])
new_faces.append(new_face)
# create the closing cap face
if doCap:
cap_face = Face(new_vertices)
new_faces.append(cap_face)
for new_face in new_faces:
utils_face.face_copy_properties(face,new_face)
return new_faces
def subdivide_face_split_roof(face, height):
"""
Extrudes a pitched roof
Arguments:
----------
face : mola.core.Face
The face to be extruded
height : mola.core.Vertex
Th height of the roof
"""
faces = []
normal = utils_face.face_normal(face)
normal = utils_vertex.vertex_scale(normal,height)
if len(face.vertices) == 4:
ev1 = utils_vertex.vertex_center(face.vertices[0], face.vertices[1])
ev1 = utils_vertex.vertex_add(ev1, normal)
ev2 = utils_vertex.vertex_center(face.vertices[2], face.vertices[3])
ev2 = utils_vertex.vertex_add(ev2, normal)
faces.append(Face([face.vertices[0], face.vertices[1], ev1]))
faces.append(Face([face.vertices[1], face.vertices[2], ev2, ev1]))
faces.append(Face([face.vertices[2], face.vertices[3], ev2]))
faces.append(Face([face.vertices[3], face.vertices[0], ev1, ev2]))
for f in faces:
utils_face.face_copy_properties(face,f)
return faces
elif len(face.vertices) == 3:
ev1 = utils_vertex.vertex_center(face.vertices[0], face.vertices[1])
ev1 = utils_vertex.vertex_add(ev1, normal)
ev2 = utils_vertex.vertex_center(face.vertices[1], face.vertices[2])
ev2 = utils_vertex.vertex_add(ev2, normal)
faces.append(Face([face.vertices[0], face.vertices[1], ev1]))
faces.append(Face([face.vertices[1], ev2, ev1]))
faces.append(Face([face.vertices[1], face.vertices[2], ev2]))
faces.append(Face([face.vertices[2], face.vertices[0], ev1, ev2]))
for f in faces:
utils_face.face_copy_properties(face, f)
return faces
return [face]
def subdivide_face_extrude_to_point(face, point):
"""
Extrudes the face to a point by creating a
triangular face from each edge to the point.
Arguments:
----------
face : mola.core.Face
The face to be extruded
point : mola.core.Vertex
The point to extrude to
"""
numV = len(face.vertices)
faces = []
for i in range(numV):
v1 = face.vertices[i]
v2 = face.vertices[(i + 1) % numV]
f = Face([v1, v2, point])
utils_face.face_copy_properties(face, f)
faces.append(f)
return faces
def subdivide_face_extrude_to_point_center(face, height=0.0):
"""
Extrudes the face to the center point moved by height
normal to the face and creating a triangular face from
each edge to the point.
Arguments:
----------
face : mola.core.Face
The face to be extruded
height : float
The distance of the new point to the face center, default 0
"""
normal = utils_face.face_normal(face)
normal = utils_vertex.vertex_scale(normal,height)
center = utils_face.face_center(face)
center = utils_vertex.vertex_add(center,normal)
return subdivide_face_extrude_to_point(face,center)
def subdivide_mesh_extrude_to_point_center(mesh,heights,doExtrudes):
new_mesh = Mesh()
for face,height,doExtrude in zip(mesh.faces,heights,doExtrudes):
if doExtrude:
new_mesh.faces.extend(subdivide_face_extrude_to_point_center(face,height))
else:
new_mesh.faces.append(face)
new_mesh.update_topology()
return new_mesh
def subdivide_face_offset_planar(face,offsets):
newPts = []
for i in range(len(face.vertices)):
iP = i - 1
if(iP < 0):
iP = len(face.vertices)-1
iN = (i + 1) % len(face.vertices)
v0 = face.vertices[iP]
v1 = face.vertices[i]
v2 = face.vertices[iN]
newPts.append(utils_vertex.vertex_offset_point(v0, v1, v2, offsets[iP], offsets[i]))
f = Face(newPts)
utils_face.face_copy_properties(face, f)
return f
def subdivide_face_split_offset(face,offset):
offsets = [offset] * len(face.vertices)
return subdivide_face_split_offsets(face, offsets)
def subdivide_face_split_offsets(face,offsets):
offsetFace = subdivide_face_offset_planar(face,offsets)
nOffsetFaces = 0
for o in offsets:
if(abs(o) > 0):
nOffsetFaces += 1
faces = []
for i in range(len(face.vertices)):
if(abs(offsets[i]) > 0):
i2 = (i + 1) % len(face.vertices)
f = Face([face.vertices[i], face.vertices[i2], offsetFace.vertices[i2], offsetFace.vertices[i]])
utils_face.face_copy_properties(face, f)
faces.append(f)
faces.append(offsetFace)
for f in faces:
if(utils_face.face_area(f) < 0):
f.vertices.reverse()
return faces
def subdivide_face_split_rel_multiple(face, direction, splits):
sA = []
sA.append(face.vertices[direction])
lA = face.vertices[direction + 1]
sB = []
sB.append(face.vertices[direction + 3])
lB = face.vertices[(direction + 2) % len(face.vertices)]
for i in range(len(splits)):
sA.append(utils_vertex.vertex_between_rel(sA[0], lA,splits[i]))
sB.append(utils_vertex.vertex_between_rel(sB[0], lB,splits[i]))
sA.append(lA)
sB.append(lB)
result = []
for i in range(len(splits) + 1):
if(dir == 1):
f = Face([sB[i], sA[i], sA[i+1], sB[i+1]])
utils_face.face_copy_properties(face, f)
result.append(f)
else:
f = Face([sB[i], sB[i+1], sA[i+1], sA[i]])
utils_face.face_copy_properties(face, f)
result.append(f)
return result
def subdivide_face_split_rel(face, direction, split):
"""
Splits face in given direction.
Arguments:
----------
face : mola.core.Face
The face to be split
direction : integer (-1 or 0)
split : float
Position of the split relative to initial face points (0 to 1)
"""
return subdivide_face_split_rel_multiple(face, direction, [split])
def subdivide_face_split_frame(face, w):
"""
Creates an offset frame with quad corners. Works only with convex shapes.
Arguments:
----------
face : mola.core.Face
The face to be split
w : float
The width of the offset frame
"""
faces = []
innerVertices = []
for i in range(len(face.vertices)):
if(i == 0):
vp = face.vertices[len(face.vertices)-1]
else:
vp = face.vertices[i - 1]
v = face.vertices[i]
vn = face.vertices[(i + 1) % len(face.vertices)]
vnn = face.vertices[(i + 2) % len(face.vertices)]
th1 = utils_vertex.vertex_angle_triangle(vp,v,vn)
th2 = utils_vertex.vertex_angle_triangle(v,vn,vnn)
w1 = w / math.sin(th1)
w2 = w / math.sin(th2)
vs1 = _vertices_frame(v, vn, w1, w2)
vs2 = _vertices_frame(_vertices_frame(vp, v, w1, w1)[2], _vertices_frame(vn, vnn, w2, w2)[1], w1, w2)
innerVertices.append(vs2[1])
f1 = Face([vs1[0], vs2[0], vs2[1], vs1[1]])
utils_face.face_copy_properties(face, f1)
f2 = Face([vs1[1], vs2[1], vs2[2], vs1[2]])
utils_face.face_copy_properties(face, f2)
faces.extend([f1, f2])
fInner = Face(innerVertices)
utils_face.face_copy_properties(face, fInner)
faces.append(fInner)
return faces
def _vertices_frame(v1,v2,w1,w2):
p1 = utils_vertex.vertex_between_abs(v1, v2, w1)
p2 = utils_vertex.vertex_between_abs(v2, v1, w2)
return [v1, p1, p2, v2]