forked from dbt-ethz/mola
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh_factory.py
347 lines (311 loc) · 12.2 KB
/
mesh_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = ['Benjamin Dillenburger','Demetris Shammas','Mathias Bernhard']
__copyright__ = 'Copyright 2019 / Digital Building Technologies DBT / ETH Zurich'
__license__ = 'MIT License'
__email__ = ['<[email protected]>']
from mola.core_mesh import Mesh
from mola.core_vertex import Vertex
from mola.core_face import Face
from mola import utils_vertex
import math
def construct_single_face(vertices):
"""
Creates and returns a single face mesh from the vertices.
Arguments:
----------
vertices : list of mola.core.Vertex
The vertices describing the face
"""
mesh = Mesh()
mesh.vertices = vertices
mesh.faces = [Face(vertices)]
mesh.update_topology()
return mesh
def construct_cone(z1, z2, radius1, radius2, nSegments, capBottom=True, capTop=True):
"""
Creates and returns a conic cylinder.
"""
delaAngle = math.radians(360.0 / nSegments)
angle = 0
verticesBottom = []
verticesTop = []
for i in range(nSegments):
x1 = radius1 * math.cos(angle)
y1 = radius1 * math.sin(angle)
verticesBottom.append(Vertex(x1, y1, z1))
x2 = radius2 * math.cos(angle)
y2 = radius2 * math.sin(angle)
verticesTop.append(Vertex(x2, y2, z2))
angle += delaAngle
mesh = Mesh()
mesh.vertices.extend(verticesBottom)
mesh.vertices.extend(verticesTop)
for i in range(nSegments):
i2 = (i + 1) % nSegments
mesh.faces.append(Face([verticesBottom[i],verticesBottom[i2],verticesTop[i2],verticesTop[i]]))
if capBottom:
# centerBottom = Vertex(0, 0, z1)
# mesh.vertices.append(centerBottom)
# for i in range(nSegments):
# i2=(i+1)%nSegments
# mesh.faces.append(Face([verticesBottom[i2],verticesBottom[i],centerBottom]))
mesh.faces.append(Face(list(reversed(verticesBottom))))
if capTop:
# centerTop=Vertex(0,0,z2)
# mesh.vertices.append(centerTop)
# for i in range(nSegments):
# i2=(i+1)%nSegments
# mesh.faces.append(Face([verticesTop[i],verticesTop[i2],centerTop]))
mesh.faces.append(Face(verticesTop))
mesh.update_topology()
return mesh
def construct_box(x1,y1,z1,x2,y2,z2):
"""
Creates and returns a mesh box with six quad faces.
Arguments:
----------
x1,y1,z1 : float
The coordinates of the bottom left front corner
x2,y2,z2 : float
The coordinates of the top right back corner
"""
mesh = Mesh()
v1 = Vertex(x1, y1, z1)
v2 = Vertex(x1, y2, z1)
v3 = Vertex(x2, y2, z1)
v4 = Vertex(x2, y1, z1)
v5 = Vertex(x1, y1, z2)
v6 = Vertex(x1, y2, z2)
v7 = Vertex(x2, y2, z2)
v8 = Vertex(x2, y1, z2)
mesh.vertices = [v1, v2, v3, v4, v5, v6, v7, v8]
f1 = Face([v1, v2, v3, v4])
f2 = Face([v8, v7, v6, v5])
f3 = Face([v4, v3, v7, v8])
f4 = Face([v3, v2, v6, v7])
f5 = Face([v2, v1, v5, v6])
f6 = Face([v1, v4, v8, v5])
mesh.faces = [f1, f2, f3, f4, f5, f6]
mesh.update_topology()
return mesh
def construct_icosahedron(radius=1,cx=0,cy=0,cz=0):
"""
Creates and returns a mesh in the form of an icosahedron.
Optional Arguments:
----------
radius : float
The radius of the containing sphere.
cx,cy,cz : float
The coordinates of the center point.
"""
mesh = Mesh()
phi = (1 + 5 ** 0.5) / 2
coordA = 1 / (2 * math.sin(2 * math.pi / 5))
coordB = phi / (2 * math.sin(2 * math.pi / 5))
mesh.vertices = [Vertex(0, -coordA, coordB),
Vertex(coordB, 0, coordA),
Vertex(coordB, 0, -coordA),
Vertex(-coordB, 0, -coordA),
Vertex(-coordB, 0, coordA),
Vertex(-coordA, coordB, 0),
Vertex(coordA, coordB, 0),
Vertex(coordA, -coordB, 0),
Vertex(-coordA, -coordB, 0),
Vertex(0, -coordA, -coordB),
Vertex(0, coordA, -coordB),
Vertex(0, coordA, coordB)]
for i in range(len(mesh.vertices)):
mesh.vertices[i] = utils_vertex.vertex_scale(mesh.vertices[i], radius)
mesh.vertices[i] = utils_vertex.vertex_add(mesh.vertices[i], Vertex(cx,cy,cz))
indices = [1, 2, 6, 1, 7, 2, 3, 4, 5, 4, 3, 8, 6, 5, 11, 5, 6, 10, 9, 10, 2, 10, 9, 3, 7, 8, 9, 8, 7, 0, 11, 0, 1, 0, 11, 4, 6, 2, 10, 1, 6, 11, 3, 5, 10, 5, 4, 11, 2, 7, 9, 7, 1, 0, 3, 9, 8, 4, 8, 0]
faces = []
for i in range(0,len(indices),3):
f = Face([mesh.vertices[indices[i]], mesh.vertices[indices[i + 1]], mesh.vertices[indices[i + 2]]])
faces.append(f)
mesh.faces = faces
mesh.update_topology()
return mesh
def construct_dodecahedron(radius=1, cx=0,cy=0,cz=0):
"""
Constructs a dodecaheron mesh.
Optional Arguments:
----------
radius : float
The radius of the containing sphere
cx,cy,cz : float
The coordinates of the center point.
"""
mesh = Mesh()
phi = (1 + 5 ** 0.5) / 2
mesh.vertices = [Vertex( 1, 1, 1),
Vertex( 1, 1,-1),
Vertex( 1,-1, 1),
Vertex( 1,-1,-1),
Vertex(-1, 1, 1),
Vertex(-1, 1,-1),
Vertex(-1,-1, 1),
Vertex(-1,-1,-1),
Vertex(0,-phi,-1/phi),
Vertex(0,-phi, 1/phi),
Vertex(0, phi,-1/phi),
Vertex(0, phi, 1/phi),
Vertex(-phi,-1/phi,0),
Vertex(-phi, 1/phi,0),
Vertex( phi,-1/phi,0),
Vertex( phi, 1/phi,0),
Vertex(-1/phi,0,-phi),
Vertex( 1/phi,0,-phi),
Vertex(-1/phi,0, phi),
Vertex( 1/phi,0, phi)]
for i in range(len(mesh.vertices)):
mesh.vertices[i] = utils_vertex.vertex_scale(mesh.vertices[i], radius)
mesh.vertices[i] = utils_vertex.vertex_add(mesh.vertices[i], Vertex(cx,cy,cz))
indices = [2,9,6,18,19,
4,11,0,19,18,
18,6,12,13,4,
19,0,15,14,2,
4,13,5,10,11,
14,15,1,17,3,
1,15,0,11,10,
3,17,16,7,8,
2,14,3,8,9,
6,9,8,7,12,
1,10,5,16,17,
12,7,16,5,13]
for i in range(0, len(indices), 5):
f = Face([mesh.vertices[indices[i]],
mesh.vertices[indices[i + 1]],
mesh.vertices[indices[i + 2]],
mesh.vertices[indices[i + 3]],
mesh.vertices[indices[i + 4]]])
mesh.faces.append(f)
mesh.update_topology()
return mesh
def construct_tetrahedron(size=1,cx=0,cy=0,cz=0):
"""
Constructs a tetrahedron mesh.
Optional Arguments:
----------
side : float
The edge length of the tetrahedron
cx,cy,cz : float
The coordinates of the center point.
"""
mesh = Mesh()
coord = 1 / math.sqrt(2)
mesh.vertices = [Vertex(+1, 0, -coord),
Vertex(-1, 0, -coord),
Vertex(0, +1, +coord),
Vertex(0, -1, +coord)]
for i in range(len(mesh.vertices)):
mesh.vertices[i] = utils_vertex.vertex_scale(mesh.vertices[i], size / 2)
mesh.vertices[i] = utils_vertex.vertex_add(mesh.vertices[i], Vertex(cx, cy, cz))
f1 = Face([mesh.vertices[0], mesh.vertices[1], mesh.vertices[2]])
f2 = Face([mesh.vertices[1], mesh.vertices[0], mesh.vertices[3]])
f3 = Face([mesh.vertices[2], mesh.vertices[3], mesh.vertices[0]])
f4 = Face([mesh.vertices[3], mesh.vertices[2], mesh.vertices[1]])
mesh.faces = [f1, f2, f3, f4]
mesh.update_topology()
return mesh
def construct_torus(ringRadius, tubeRadius, ringN = 16, tubeN = 16):
"""
Constructs a torus mesh.
Arguments:
----------
ringRadius : float
the big radius of the axis
tubeRadius : float
radius of the the tube along the axis
Optional Arguments:
----------
ringN : int
resolution along the ring
tubeN : int
resolution along the tube
"""
mesh = Mesh()
theta = 2 * math.pi / ringN
phi = 2 * math.pi / tubeN
for i in range (ringN):
for j in range (tubeN):
mesh.vertices.append(_torus_vertex(ringRadius, tubeRadius, phi * j, theta * i))
for i in range(ringN):
ii = (i + 1) % ringN
for j in range(tubeN):
jj = (j + 1) % tubeN
a = i * tubeN + j
b = ii * tubeN + j
c = ii * tubeN + jj
d = i * tubeN + jj
f = Face([mesh.vertices[k] for k in [a, b, c, d]])
mesh.faces.append(f)
mesh.update_topology()
return mesh
def _torus_vertex(ringRadius, tubeRadius, ph,th):
x = math.cos(th) * (ringRadius + tubeRadius * math.cos(ph))
y = math.sin(th) * (ringRadius + tubeRadius * math.cos(ph))
z = tubeRadius * math.sin(ph)
return Vertex(x, y, z)
def construct_rhombic_dodecahedron(edge_length=1, cx=0, cy=0, cz=0):
mesh = Mesh()
#make vertices
mesh.vertices = [Vertex(0, 0, 2 * edge_length),
Vertex(-edge_length, edge_length, edge_length),
Vertex(-edge_length, -edge_length, edge_length),
Vertex(edge_length, -edge_length, edge_length),
Vertex(edge_length, edge_length, edge_length),
Vertex(-2 * edge_length, 0, 0),
Vertex(0, -2*edge_length, 0),
Vertex(2 * edge_length, 0, 0),
Vertex(0, 2 * edge_length, 0),
Vertex(-edge_length, edge_length, -edge_length),
Vertex(-edge_length, -edge_length, -edge_length),
Vertex(edge_length, -edge_length, -edge_length),
Vertex(edge_length, edge_length, -edge_length),
Vertex(0, 0, -2 * edge_length)]
#move center to desired coordinates
center = Vertex(cx, cy, cz)
for v in mesh.vertices:
v.add(center)
#construct quad faces
f1 = Face([mesh.vertices[0],mesh.vertices[2],mesh.vertices[5],mesh.vertices[1]])
f2 = Face([mesh.vertices[0],mesh.vertices[3],mesh.vertices[6],mesh.vertices[2]])
f3 = Face([mesh.vertices[0],mesh.vertices[4],mesh.vertices[7],mesh.vertices[3]])
f4 = Face([mesh.vertices[0],mesh.vertices[1],mesh.vertices[8],mesh.vertices[4]])
f5 = Face([mesh.vertices[2],mesh.vertices[6],mesh.vertices[10],mesh.vertices[5]])
f6 = Face([mesh.vertices[3],mesh.vertices[7],mesh.vertices[11],mesh.vertices[6]])
f7 = Face([mesh.vertices[4],mesh.vertices[8],mesh.vertices[12],mesh.vertices[7]])
f8 = Face([mesh.vertices[1],mesh.vertices[5],mesh.vertices[9],mesh.vertices[8]])
f9 = Face([mesh.vertices[10],mesh.vertices[13],mesh.vertices[9],mesh.vertices[5]])
f10 = Face([mesh.vertices[11],mesh.vertices[13],mesh.vertices[10],mesh.vertices[6]])
f11 = Face([mesh.vertices[12],mesh.vertices[13],mesh.vertices[11],mesh.vertices[7]])
f12 = Face([mesh.vertices[9],mesh.vertices[13],mesh.vertices[12],mesh.vertices[8]])
mesh.faces = [f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12]
mesh.update_topology()
return mesh
def construct_octahedron(edgeLen=1, cx=0, cy=0, cz=0):
mesh = Mesh()
#make vertices
mesh.vertices = [Vertex(0, 0, edgeLen/2),
Vertex(-edgeLen/2, 0, 0),
Vertex(0, -edgeLen/2, 0),
Vertex(edgeLen/2, 0, 0),
Vertex(0, edgeLen/2, 0),
Vertex(0, 0, -edgeLen/2)]
#move center to desired coordinates
center = Vertex(cx, cy, cz)
for v in mesh.vertices:
v.add(center)
#construct triangular faces
f1 = Face([mesh.vertices[0], mesh.vertices[1], mesh.vertices[2]])
f2 = Face([mesh.vertices[0], mesh.vertices[2], mesh.vertices[3]])
f3 = Face([mesh.vertices[0], mesh.vertices[3], mesh.vertices[4]])
f4 = Face([mesh.vertices[0], mesh.vertices[4], mesh.vertices[1]])
f5 = Face([mesh.vertices[5], mesh.vertices[2], mesh.vertices[1]])
f6 = Face([mesh.vertices[5], mesh.vertices[3], mesh.vertices[2]])
f7 = Face([mesh.vertices[5], mesh.vertices[4], mesh.vertices[3]])
f8 = Face([mesh.vertices[5], mesh.vertices[1], mesh.vertices[4]])
mesh.faces = [f1,f2,f3,f4,f5,f6,f7,f8]
mesh.update_topology()
return mesh