-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathps8.lyx
441 lines (345 loc) · 8.76 KB
/
ps8.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2.5cm
\topmargin 2.5cm
\rightmargin 2.5cm
\bottommargin 2.5cm
\headheight 2.5cm
\headsep 2.5cm
\footskip 2.5cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Problem Set 8
\end_layout
\begin_layout Author
Daryl Larsen
\end_layout
\begin_layout Section
PwCo
\begin_inset Formula $\implies$
\end_inset
UnCo
\end_layout
\begin_layout Standard
\series bold
(a)
\end_layout
\begin_layout Standard
\begin_inset Formula $\forall x\in[a,b],f_{n}(x)\rightarrow_{p}f(x),f(x)$
\end_inset
monotone increasing and continuous on
\begin_inset Formula $[a,b]$
\end_inset
.
Let
\begin_inset Formula $\delta>0$
\end_inset
such that
\begin_inset Formula $B(x,\delta)=(x+\delta,x-\delta)\cap[a,b]$
\end_inset
and let
\begin_inset Formula $y\in B(x,\delta)$
\end_inset
.
\begin_inset Formula $y\in B(x,\delta)\implies|y-x|<\delta$
\end_inset
, therefore we have
\begin_inset Formula
\begin{align*}
x-\delta\leq y\leq x+\delta\rightarrow & f_{n}(x-\delta)\leq f_{n}(y)\leq f_{n}(x+\delta)\\
& f(x-\delta)\leq f(y)\leq f(x+\delta)
\end{align*}
\end_inset
because
\begin_inset Formula $f_{n}$
\end_inset
and
\begin_inset Formula $f$
\end_inset
are monotonically increasing.
Then
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
|f_{n}(y)-f(y)| & \leq\max\{|f_{n}(x+\delta)-f(x-\delta)|,|f_{n}(x-\delta)-f(x+\delta)|\}\\
& \leq|f_{n}(x+\delta)-f(x-\delta)|+|f_{n}(x-\delta)-f(x+\delta)|
\end{align*}
\end_inset
by the triangle inequality.
Therefore
\begin_inset Formula
\[
\sup|f_{n}(y)-f(y)|\leq|f_{n}(x+\delta)-f(x-\delta)|+|f_{n}(x-\delta)-f(x+\delta)|
\]
\end_inset
\end_layout
\begin_layout Standard
\series bold
(b)
\end_layout
\begin_layout Standard
In (a), we showed that any
\begin_inset Formula $\delta-$
\end_inset
ball in
\begin_inset Formula $[a,b]$
\end_inset
would satisfy the above inequality.
The difference here is that we're adding a finite sequence of x's and taking
the maximum over all those x's.
Since from (a) this is true for any
\begin_inset Formula $x_{j}$
\end_inset
, it's true for the maximum.
\end_layout
\begin_layout Standard
\series bold
(c)
\end_layout
\begin_layout Standard
\begin_inset Formula $|f_{n}(x_{j}+\delta)-f(x_{j}-\delta)|\leq|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|+f(x_{j}+\delta)-f(x_{j}-\delta)|$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $f(x)$
\end_inset
is continuous and satisfies asymptotic uniform equicontinuity.
We can pick
\begin_inset Formula $\delta>0$
\end_inset
small enough so that for
\begin_inset Formula $n$
\end_inset
large:
\begin_inset Formula
\[
\sup_{x\in[a,b]}\sup_{x-\delta<x^{\prime}<x+\delta}|f_{n}(x^{\prime})-f_{n}(x)|<\epsilon/4
\]
\end_inset
Because
\begin_inset Formula $f_{n}(x)\rightarrow_{p}f(x)$
\end_inset
we have:
\begin_inset Formula
\begin{align*}
|f_{n}(x_{j})-f(x_{j})| & <\epsilon/4J,\forall j=1,2,...,J\\
\implies\max_{j=1,2,...,J}|f_{n}(x_{j})-f(x_{j})| & <\epsilon/4
\end{align*}
\end_inset
We can choose
\begin_inset Formula $\delta$
\end_inset
small enough to have
\begin_inset Formula $\max_{j=1,2,...,J}|f_{n}(x_{j})-f(x_{j})|<\epsilon/4$
\end_inset
.
Therefore
\begin_inset Formula
\begin{align*}
|f_{n}(x_{j}+\delta)-f(x_{j}-\delta)| & \leq|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|+|f(x_{j}+\delta)-f(x_{j}-\delta)|\\
\rightarrow|f(x_{j}+\delta)-f(x_{j}-\delta) & <\epsilon/4
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\series bold
(d)
\end_layout
\begin_layout Standard
From (c),
\begin_inset Formula $|f_{n}(x_{j})-f(x_{j})|<\epsilon/4J$
\end_inset
.
Since
\begin_inset Formula $f_{n}(x_{j})\rightarrow_{p}f(x_{j}),f_{n}(x_{j}+\delta)\rightarrow_{p}f(x_{j}+\delta)$
\end_inset
.
Hence for n large,
\begin_inset Formula $|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|<\epsilon/4J$
\end_inset
.
Furthermore, we know that
\begin_inset Formula $x_{n}\rightarrow_{p}x$
\end_inset
iff
\begin_inset Formula $\forall\epsilon,\delta>0,\exists N_{\epsilon}\in\mathbb{N}\text{ s.t. }P(|x_{n}-x|>\epsilon)<\delta,\forall n\geq N_{\epsilon}$
\end_inset
.
Pick
\begin_inset Formula $\delta=\epsilon/4J$
\end_inset
and
\begin_inset Formula
\[
P(|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|>\epsilon/4J)<\epsilon/2J,\forall n\geq N_{\epsilon}
\]
\end_inset
\end_layout
\begin_layout Standard
\series bold
(e)
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
\max|f_{n}(x)-f(x)| & \leq\max_{j=1,2,...,J}\{|f_{n}(x_{j}+\delta)-f(x_{j}-\delta)|\}+\max_{j}\{|f_{n}(x_{j}-\delta)-f(x_{j}+\delta)|\}\\
& \leq\max_{j}\{|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|\}+\max_{j}\{|f(x_{j}+\delta)-f(x_{j}-\delta)|\}+\max_{j}\{|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|\}+\max_{j}\{|f_{n}(x_{j}+\delta)-f(x_{j}-\delta)|\}
\end{align*}
\end_inset
from (c),
\begin_inset Formula
\begin{align*}
\sup_{x\in[a,b]}|f_{n}(x)-f(x)| & \leq\max_{j}\{|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|\}+\max_{j}\{|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|\}+\epsilon/2\\
& \leq\sum_{j=1}^{J}|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|+\sum_{j=1}^{J}|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|+\epsilon/2
\end{align*}
\end_inset
Now we can compute probabilities:
\begin_inset Formula
\begin{align*}
P(\sup_{x\in[a,b]}|f_{n}(x)-f(x)|>\epsilon) & \leq P(\sum_{j}|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|+\sum_{j}|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|+\epsilon/2)>\epsilon\\
& \leq P(\sum_{j}|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|+\sum_{j}|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|)>\epsilon/2\\
& \leq P(\sum_{j}|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|>\epsilon/4)+P(\sum_{j}|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|>\epsilon/4)\\
& \leq\sum_{j}P(|f_{n}(x_{j}+\delta)-f(x_{j}+\delta)|>\epsilon/4J)+\sum_{j}P(|f_{n}(x_{j}-\delta)-f(x_{j}-\delta)|>\epsilon/4J\\
& \leq\sum_{j}\epsilon/2J+\sum_{j}\epsilon/2J=\epsilon
\end{align*}
\end_inset
\end_layout
\begin_layout Section
Uniform convergence of empirical CDFs
\end_layout
\begin_layout Standard
\series bold
(a)
\end_layout
\begin_layout Standard
Since
\begin_inset Formula $F_{n}$
\end_inset
and
\begin_inset Formula $F$
\end_inset
are CDFs, they are monotonically increasing and by the weak law of large
numbers,
\begin_inset Formula $F_{n}(x)\rightarrow_{p}F(x)$
\end_inset
.
So from question 1,
\begin_inset Formula
\[
\sup_{x\in[a,b]}|F_{n}(x)-F(x)|\rightarrow_{p}0
\]
\end_inset
for any interval
\begin_inset Formula $[a,b]$
\end_inset
.
\end_layout
\begin_layout Standard
\series bold
(b)
\end_layout
\begin_layout Standard
Pick
\begin_inset Formula $a,b\in\mathbb{R}$
\end_inset
such that
\begin_inset Formula $F(a)<\epsilon/8$
\end_inset
and
\begin_inset Formula $1-F(b)<\epsilon/8$
\end_inset
.
For
\begin_inset Formula $\delta>0,\exists N_{\epsilon}\in\mathbb{N}$
\end_inset
such that
\begin_inset Formula $P(F_{n}(a)<\epsilon/6)<\delta/3,n\leq N_{\epsilon}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
P(\sup_{x\in\mathbb{R}}|F_{n}(x)-F(x)|>\epsilon) & \leq P(|F_{n}(a)|+|F(a)|+\sup_{x\in[a,b]}|F_{n}(x)-F(x)|+|1-F_{n}(b)|+|1-F(b)|>\epsilon)\\
& \leq P(|F_{n}(a)|+F(a)>\epsilon/3)+P(\sup_{x\in[a,b]}|F_{n}(x)-F(x)|>\epsilon/3)+P(1-F_{n}(b)+1-F(b)>\epsilon/3)\\
& <\delta/3+\delta/3+\delta/3\\
& =\delta
\end{align*}
\end_inset
\end_layout
\end_body
\end_document