-
Notifications
You must be signed in to change notification settings - Fork 0
/
GreensFunction2DRefWedgeAbs.cpp
988 lines (820 loc) · 34.4 KB
/
GreensFunction2DRefWedgeAbs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
#include "compat.h"
#include <iomanip>
#include <cmath>
#include <boost/format.hpp>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_roots.h>
#include "GreensFunction2DRefWedgeAbs.hpp"
#include "findRoot.hpp"
namespace greens_functions
{
const Real GreensFunction2DRefWedgeAbs::maximum_alpha2_Dt = -1e0 * log(std::numeric_limits<Real>::min());
const Real GreensFunction2DRefWedgeAbs::CUTOFF = 1e-10;
GreensFunction2DRefWedgeAbs::GreensFunction2DRefWedgeAbs(const Real D,
const Real r0,
const Real a,
const Real phi)
: D_(D), a_(a), r0_(r0), phi_(phi)
{
if(phi_ < 0 && 2e0 * M_PI < phi_)
throw std::invalid_argument((
boost::format(
"GreensFunction2DRefWedgeAbs: 0 < phi < 2pi: phi=%.16g")
% phi_).str());
}
GreensFunction2DRefWedgeAbs::~GreensFunction2DRefWedgeAbs()
{
;
}
const Real GreensFunction2DRefWedgeAbs::p_survival(const Real t) const
{
// when t == 0.0, return value become eventually 1.0,
// but the speed of convergence is too slow.
if(t == 0.0) return 1.0;
const Real r_0(this->getr0());
const Real a(this->geta());
const Real Dt(this->getD() * t);
const Integer num_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term1(0e0);
Real term2(0e0);
Real term(0e0);
Real a_alpha_n(0e0);
Real alpha_n(0e0);
Real J0_r0_alpha_n(0e0);
Real J1_a_alpha_n(0e0);
Integer n(1);
// calculating
// 2 / a * sum_m[ J0(r0 * alpha_m0) / {alpha_m0 * J1(a * alpha_m0)} *
// exp(-alpha_m0^2 * Dt)]
// same as 2DAbs.
for(/*Integer n = 1*/; n < num_term_use; ++n)
{
a_alpha_n = gsl_sf_bessel_zero_J0(n);
alpha_n = a_alpha_n / a;
J0_r0_alpha_n = gsl_sf_bessel_J0(r_0 * alpha_n);
J1_a_alpha_n = gsl_sf_bessel_J1(a_alpha_n);
term1 = std::exp(-1e0 * alpha_n * alpha_n * Dt) * J0_r0_alpha_n;
term2 = alpha_n * J1_a_alpha_n;
term = term1 / term2;
sum += term;
// std::cout << "sum " << sum << ", term" << term << std::endl;
if(fabs(term/sum) < threshold)
{
// std::cout << "normal exit. " << n << std::endl;
break;
}
}
if(n == num_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in p_surv ";
// oss << "t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_surv: t = "
<< t << ", " << this->dump();
}
return (2e0 * sum / a);
}
const Real GreensFunction2DRefWedgeAbs::p_int_r(const Real r, const Real t) const
{
//speed of convergence is too slow
if(r == 0e0) return 0e0;
const Real r_0(this->getr0());
const Real a(this->geta());
const Real Dt(this->getD() * t);
const Integer num_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
Real term1(0e0);
Real term2(0e0);
Real term3(0e0);
Real a_alpha_n(0e0);
Real alpha_n(0e0);
Real J0_r0_alpha_n(0e0);
Real J1_r_alpha_n(0e0);
Real J1_a_alpha_n(0e0);
Integer n(1);
// calculating
// 2r / a^2 *
// sum_m[ J0(r0 * alpha_m0)J1(r * alpha_m0) / <= term 2
// {alpha_m0 * {J1(a * alpha_m0)}^2} * <= term 3
// exp(-alpha_m0^2 * Dt)] <= term 1
// same as 2DAbs.
for(/*Integer n = 1*/; n < num_term_use; ++n)
{
a_alpha_n = gsl_sf_bessel_zero_J0(n);// n-th root (a * alpha_n)
alpha_n = a_alpha_n / a;
J0_r0_alpha_n = gsl_sf_bessel_J0(r_0 * alpha_n);
J1_r_alpha_n = gsl_sf_bessel_J1(r * alpha_n);
J1_a_alpha_n = gsl_sf_bessel_J1(a_alpha_n);
// exponential term
term1 = std::exp(-1e0 * alpha_n * alpha_n * Dt);
// numerator. product of bessel functions
term2 = J1_r_alpha_n * J0_r0_alpha_n;
// denominator. product of alpha and square of bessel functions
term3 = (alpha_n * J1_a_alpha_n * J1_a_alpha_n);
term = term1 * term2 / term3;
sum += term;
// std::cout << "sum " << sum << ", term" << term << std::endl;
if(fabs(term/sum) < threshold)
{
// std::cout << "normal exit. " << n << std::endl;
break;
}
}
if(n == num_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in p_int_r ";
// oss << "t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_int_r: r = "
<< r << ", t = " << t << ", " << this->dump();
}
return (2e0 * r * sum / (a*a));
}
const Real GreensFunction2DRefWedgeAbs::p_int_theta(const Real r,
const Real theta,
const Real t) const
{
/* XXX: Theta definition isn't same as other GF. The initial position *
* is not zero but phi/2. Compensation will be done by drawTheta.*
* This function asserts the accepting value theta is in the *
* range [0, phi/2] */
// where the r is zero, theta is not defined.
// return linearly incleasing function(integrated uniform distribution).
if(fabs(r) < CUTOFF)
{
return theta / this->phi_;
}
if(theta > this->phi_ * 0.5)
{
throw std::invalid_argument("too large theta > phi/2.");
}
if(theta < 0e0)
{
throw std::invalid_argument("negative theta");
}
// r=a is abs boundary
if(fabs(1e0 - r/this->a_) < CUTOFF)
{
return 0e0;
}
// when t is too large comparing to phi, the theta probability
// become uniform distribution.
Real first_bessel_order = 2e0 * M_PI / this->phi_;
Real alpha = gsl_sf_bessel_zero_Jnu(first_bessel_order, 1) / this->a_;
if(alpha * alpha * this->D_ * t >= maximum_alpha2_Dt)
{
std::cout << "Warning: too large Dt (or too small phi)."
<< " return uniform distribution."
<< std::endl;
// theta distributes uniformly! return theta / 2pi.
return (theta * 0.5 / this->phi_) * this->p_int_phi(r, t);
}
// this returns accumurate probability distribution,
// if(theta == phi) return 0e0; // theta == 0e0?
// if(fabs(theta - 2*M_PI) < CUTOFF) return 1e0;
return p_int_theta_first(r, theta, t) + p_int_theta_second(r, theta, t);
}
const Real GreensFunction2DRefWedgeAbs::p_int_theta_first(const Real r,
const Real theta,
const Real t) const
{
const Real r_0(this->getr0());
const Real a(this->geta());
const Real minusDt(-1e0 * this->getD() * t);
const Integer num_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
Real term1(0e0);
Real term2(0e0);
Real term3(0e0);
Real a_alpha_n(0e0);
Real alpha_n(0e0);
Real J0_r_alpha_n(0e0);
Real J0_r0_alpha_n(0e0);
Real J1_a_alpha_n(0e0);
// calculating
// 2 * theta / (phi * a^2) *
// sum_m[ exp(-alpha_m0^2 * Dt) * <= term 1
// J0(r0 * alpha_m0) * J0(r * alpha_m0) / <= term 2
// {J1(a * alpha_m0)}^2 <= term 3
Integer n(1);
for(/*Integer n = 1*/; n < num_term_use; ++n)
{
a_alpha_n = gsl_sf_bessel_zero_J0(n);
alpha_n = a_alpha_n / a;
J0_r_alpha_n = gsl_sf_bessel_J0(r * alpha_n);
J0_r0_alpha_n = gsl_sf_bessel_J0(r_0 * alpha_n);
J1_a_alpha_n = gsl_sf_bessel_J1(a_alpha_n);
term1 = std::exp(alpha_n * alpha_n * minusDt);
term2 = J0_r_alpha_n * J0_r0_alpha_n;
term3 = J1_a_alpha_n * J1_a_alpha_n;
term = term1 * term2 / term3;
sum += term;
// std::cout << "sum " << sum << ", term" << term << std::endl;
if(fabs(term/sum) < threshold)
{
// std::cout << "normal exit. n = " << n << " first term" << std::endl;
break;
}
}
if(n == num_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in p_int_theta_1st r = " << r;
// oss << ", theta = " << theta << ", t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_int_theta_1st: r = "
<< r << ", theta = " << theta << ", t = " << t << ", "
<< this->dump();
}
return (4e0 * theta * sum / (this->phi_ * a * a));
}
const Real
GreensFunction2DRefWedgeAbs::p_int_theta_second(const Real r,
const Real theta,
const Real t) const
{
// in these case, second term become zero
// because of sin(2n * pi * theta / phi)
if(theta == 0e0 || theta == this->phi_ * 0.5 || theta == this->phi_)
return 0e0;
const Real r_0(this->r0_);
const Real a(this->a_);
const Real minusDt(-1e0 * this->D_ * t);
const Integer num_in_term_use(100);
const Integer num_out_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
// prepair (2pi / phi) and (2pi theta / phi). using tau = 2pi.
const Real tau_phi = 2e0 * M_PI / this->phi_;
// const Real tau_theta_phi = tau_phi * theta;
// calculating
// 8 / (pi * a^2) *
// sum_n^inf [
// ((-1)^n / n) * sin(n * 2 * pi * theta / phi) *
// sum_m [
// exp(-alpha_mn^2 * Dt) *
// J_{n * 2pi / phi}(r0 * alpha_mn) *
// J_{n * 2pi / phi}(r * alpha_mn) /
// (J_{n * 2pi / phi - 1}(a * alpha_mn) -
// J_{n * 2pi / phi + 1}(a * alpha_mn))^2
// ]
// ]
Integer n(1);
for(/*unsigned int n = 1*/; n < num_out_term_use; ++n)
{
Real in_sum(0e0);
Real in_term(0e0);
Real in_term1(0e0);
Real in_term2(0e0);
Real in_term3(0e0);
Real a_alpha_mn(0e0);
Real alpha_mn(0e0);
Real Jnpp_r_alpha_mn(0e0);
Real Jnpp_r0_alpha_mn(0e0);
Real Jnpp_d_1_a_alpha_mn(0e0);// J_n-1(a alpha_mn)
Real Jnpp_p_1_a_alpha_mn(0e0);// J_n+1(a alpha_mn)
Real bessel_order(n * tau_phi);
// std::cout << "bessel order" << bessel_order << std::endl;
Integer m(1);
for(/*unsigned int m = 1*/; m < num_in_term_use; ++m)
{
a_alpha_mn = gsl_sf_bessel_zero_Jnu(bessel_order, m);
alpha_mn = a_alpha_mn / a;
/* In the case of large Dt compared with the phi value, *
* theta distribution become uniform distribution. *
* When the case, exp(-alpha^2Dt) become zero so break here.*
* later, revice this treatment as uniform distribution *
* (not simplly break) */
in_term1 = std::exp(alpha_mn * alpha_mn * minusDt);
// if(in_term1 == 0e0) break;
// std::cout << "a alpha mn = " << a_alpha_mn << std::endl;
// std::cout << "r alpha mn = " << r * alpha_mn << std::endl;
// std::cout << "r0 alpha mn = " << r_0 * alpha_mn << std::endl;
Jnpp_r_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order, r * alpha_mn);
Jnpp_r0_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order, r_0 * alpha_mn);
Jnpp_d_1_a_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order - 1e0, a_alpha_mn);
Jnpp_p_1_a_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order + 1e0, a_alpha_mn);
in_term2 = Jnpp_r_alpha_mn * Jnpp_r0_alpha_mn;
in_term3 = Jnpp_d_1_a_alpha_mn - Jnpp_p_1_a_alpha_mn;
in_term = in_term1 * in_term2 / (in_term3 * in_term3);
in_sum += in_term;
if(fabs(in_term/in_sum) < threshold)
{
// std::cout << "normal exit. m = " << m << " second term" << std::endl;
break;
}
}
if(m == num_in_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in p_int_theta_2nd m: r = " << r;
// oss << ", theta = " << theta << ", t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_int_theta_2nd m: "
<< "r = " << r << ", theta = " << theta << ", t = "
<< t << ", " << this->dump();
}
// if(in_sum == 0e0)
// break;
term = in_sum * sin(bessel_order * theta) / n;
sum += term;
// std::cout << "outer sum " << sum << ", term" << term << std::endl;
if(fabs(in_sum / (n * sum)) < threshold)
{
// std::cout << "normal exit. n = " << n << " second term" << std::endl;
break;
/* if bessel_order * theta = product of natural number and pi,*
* term become zero and this code breaks loop too early. *
* Therefore, consider the difference between sum and *
* in_sum / n only. sin is always in range(-1,1). the effect *
* is small. */
}
}
if(n == num_out_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in p_int_theta_2nd n: r = " << r;
// oss << ", theta = " << theta << ", t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_int_theta_2nd n: "
<< "r = " << r << ", theta = " << theta << ", t = " << t
<< ", " << this->dump();
}
return (16e0 * sum / (M_PI * a * a));
}
const Real GreensFunction2DRefWedgeAbs::dp_int_theta(const Real theta,
const Real t) const
{
/* When particle escape, p_int_theta is always zero. So drawTheta *
* uses probability flax to determine where particle goes. */
if(theta > this->phi_ * 0.5)
{
throw std::invalid_argument("too large theta > phi/2.");
}
if(theta < 0e0)
{
throw std::invalid_argument("negative theta");
}
return dp_int_theta_first(theta, t) + dp_int_theta_second(theta, t);
}
const Real GreensFunction2DRefWedgeAbs::dp_int_theta_first(const Real theta,
const Real t) const
{
const Real r_0(this->r0_);
const Real a(this->a_);
const Real minusDt(-1e0 * this->D_ * t);
const Integer num_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
Real term1(0e0);
Real term2(0e0);
Real a_alpha_n(0e0);
Real alpha_n(0e0);
Real J0_r0_alpha_n(0e0);
Real J1_a_alpha_n(0e0);
// calculating
// 2 * theta / (phi * a^2) *
// sum_m[ exp(-alpha_m0^2 * Dt) * <= term 1
// -alpha_m0 * J0(r0 * alpha_m0) / <= term 2
// J1(a * alpha_m0) <= term 3
Integer n(1);
for(/*Integer n = 1*/; n < num_term_use; ++n)
{
a_alpha_n = gsl_sf_bessel_zero_J0(n);
alpha_n = a_alpha_n / a;
J0_r0_alpha_n = gsl_sf_bessel_J0(r_0 * alpha_n);
J1_a_alpha_n = gsl_sf_bessel_J1(a_alpha_n);
term1 = std::exp(alpha_n * alpha_n * minusDt);
term2 = -alpha_n * J0_r0_alpha_n;
term = term1 * term2 / J1_a_alpha_n;
sum += term;
// std::cout << "sum " << sum << ", term" << term << std::endl;
if(fabs(term/sum) < threshold)
{
// std::cout << "normal exit. n = " << n << " first term" << std::endl;
break;
}
}
if(n == num_term_use)
std::cout << "warning: too slow convergence in p_int_theta_1st: theta = "
<< theta << ", t = " << t << ", "
<< this->dump();
return (4e0 * theta * sum / (this->phi_ * a * a));
}
const Real GreensFunction2DRefWedgeAbs::dp_int_theta_second(const Real theta,
const Real t) const
{
// in these case, second term become zero
// because of sin(2n * pi * theta / phi)
if(theta == 0e0 || theta == this->phi_ * 0.5 || theta == this->phi_)
return 0e0;
const Real r_0(this->r0_);
const Real a(this->a_);
const Real minusDt(-1e0 * this->D_ * t);
const Integer num_in_term_use(100);
const Integer num_out_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
// prepair (2pi / phi) and (2pi theta / phi). using tau = 2pi.
const Real tau_phi = 2e0 * M_PI / this->phi_;
// const Real tau_theta_phi = tau_phi * theta;
// calculating
// 8 / (pi * a^2) *
// sum_n^inf [
// (1/n) * sin(n * 2 * pi * theta / phi) *
// sum_m [
// exp(-alpha_mn^2 * Dt) *
// alpha_mn * J_{n * 2pi / phi}(r0 * alpha_mn) /
// (J_{n * 2pi / phi - 1}(a * alpha_mn) -
// J_{n * 2pi / phi + 1}(a * alpha_mn))
// ]
// ]
Integer n(1);
for(/*unsigned int n = 1*/; n < num_out_term_use; ++n)
{
Real in_sum(0e0);
Real in_term(0e0);
Real in_term1(0e0);
Real in_term2(0e0);
Real in_term3(0e0);
Real a_alpha_mn(0e0);
Real alpha_mn(0e0);
Real Jnpp_r0_alpha_mn(0e0);
Real Jnpp_d_1_a_alpha_mn(0e0);// J_n-1(a alpha_mn)
Real Jnpp_p_1_a_alpha_mn(0e0);// J_n+1(a alpha_mn)
Real bessel_order(n * tau_phi);
// std::cout << "bessel order" << bessel_order << std::endl;
Integer m(1);
for(/*unsigned int m = 1*/; m < num_in_term_use; ++m)
{
a_alpha_mn = gsl_sf_bessel_zero_Jnu(bessel_order, m);
alpha_mn = a_alpha_mn / a;
/* In the case of large Dt compared with the phi value, *
* theta distribution become uniform distribution. *
* When the case, exp(-alpha^2Dt) become zero. */
in_term1 = std::exp(alpha_mn * alpha_mn * minusDt);
if(in_term1 == 0e0) break;
Jnpp_r0_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order, r_0 * alpha_mn);
Jnpp_d_1_a_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order - 1e0, a_alpha_mn);
Jnpp_p_1_a_alpha_mn
= gsl_sf_bessel_Jnu(bessel_order + 1e0, a_alpha_mn);
in_term2 = alpha_mn * Jnpp_r0_alpha_mn;
in_term3 = Jnpp_d_1_a_alpha_mn - Jnpp_p_1_a_alpha_mn;
in_term = in_term1 * in_term2 / in_term3;
in_sum += in_term;
if(fabs(in_term/in_sum) < threshold)
{
// std::cout << "normal exit. m = " << m << " second term" << std::endl;
break;
}
}
if(m == num_in_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in dp_int_theta_2nd m: ";
// oss << "theta = " << theta << ", t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_int_theta_2nd m: "
<< "theta = " << theta << ", t = "
<< t << ", " << this->dump();
}
// if(in_sum == 0e0)
// break;
term = in_sum * sin(bessel_order * theta) / n;
sum += term;
// std::cout << "outer sum " << sum << ", term" << term << std::endl;
if(fabs(in_sum / (n * sum)) < threshold)
{
// std::cout << "normal exit. n = " << n << " second term" << std::endl;
break;
/* if bessel_order * theta = product of natural number and pi,*
* term become zero and this code breaks loop too early. *
* Therefore, consider the difference between sum and *
* in_sum / n only. sin is always in range(-1,1). the effect *
* is small. */
}
}
if(n == num_out_term_use)
{
// std::ostringstream oss;
// oss << "GF2RWA: too slow convergence in dp_int_theta_2nd n: ";
// oss << "theta = " << theta << ", t = " << t << ", " << this->dump();
// throw std::runtime_error(oss.str());
std::cout << "warning: too slow convergence in p_int_theta_2nd n: theta = "
<< theta << ", t = " << t
<< ", " << this->dump();
}
return (8e0 * sum / (M_PI * a * a));
}
const Real GreensFunction2DRefWedgeAbs::p_int_phi(const Real r, const Real t) const
{
const Real r_0(this->r0_);
const Real a(this->a_);
const Real minusDt(-1e0 * this->D_ * t);
const Integer num_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
Real term1(0e0);
Real term2(0e0);
Real term3(0e0);
Real a_alpha_n(0e0);
Real alpha_n(0e0);
Real J0_r0_alpha_n(0e0);
Real J0_r_alpha_n(0e0);
Real J1_a_alpha_n(0e0);
// calculating
// 2 / a^2 sum_m[ exp(-alpha_m0^2 * Dt) * <= term 1
// J0(r0 * alpha_m0) * J0(r * alpha_m0) / <= term 2
// {J1(a * alpha_m0)}^2 <= term 3
// same as 2DAbs::p_int_2pi.
Integer n(1);
for(/*Integer n = 1*/; n < num_term_use; ++n)
{
a_alpha_n = gsl_sf_bessel_zero_J0(n);
alpha_n = a_alpha_n / a;
J0_r0_alpha_n = gsl_sf_bessel_J0(r_0 * alpha_n);
J0_r_alpha_n = gsl_sf_bessel_J0(r * alpha_n);
J1_a_alpha_n = gsl_sf_bessel_J1(a_alpha_n);
term1 = std::exp(alpha_n * alpha_n * minusDt);
term2 = J0_r_alpha_n * J0_r0_alpha_n;
term3 = J1_a_alpha_n * J1_a_alpha_n;
term = term1 * term2 / term3;
sum += term;
// std::cout << "sum " << sum << ", term" << term << std::endl;
if(fabs(term/sum) < threshold)
{
// std::cout << "normal exit. n = " << n << std::endl;
break;
}
}
if(n == num_term_use)
std::cout << "warning: too slow convergence in p_int_phi: r = "
<< r << ", t = " << t << ", " << this->dump();
return (2e0 * sum / (a * a));
}
const Real GreensFunction2DRefWedgeAbs::dp_int_phi(const Real t) const
{
const Real r_0(this->getr0());
const Real a(this->geta());
const Real minusDt(-1e0 * this->getD() * t);
const Integer num_term_use(100);
const Real threshold(CUTOFF);
Real sum(0e0);
Real term(0e0);
Real term1(0e0);
Real term2(0e0);
Real a_alpha_n(0e0);
Real alpha_n(0e0);
Real J0_r0_alpha_n(0e0);
Real J1_a_alpha_n(0e0);
// calculating
// 2 / a^2 sum_n[ exp(-alpha_n^2 * Dt) * <= term 1
// -alpha_n * J0(r0 * alpha_n) / <= term 2
// J1(a * alpha_n) <= term 3
Integer n(1);
for(/*Integer n = 1*/; n < num_term_use; ++n)
{
a_alpha_n = gsl_sf_bessel_zero_J0(n);
alpha_n = a_alpha_n / a;
J0_r0_alpha_n = gsl_sf_bessel_J0(r_0 * alpha_n);
J1_a_alpha_n = gsl_sf_bessel_J1(a_alpha_n);
term1 = std::exp(alpha_n * alpha_n * minusDt);
term2 = -alpha_n * J0_r0_alpha_n;
term = term1 * term2 / J1_a_alpha_n;
sum += term;
// std::cout << "sum " << sum << ", term" << term << std::endl;
if(fabs(term/sum) < threshold)
{
// std::cout << "normal exit. n = " << n << std::endl;
break;
}
}
if(n == num_term_use)
std::cout << "warning: too slow convergence in dp_int_phi: t = "
<< t << ", " << this->dump();
return (2e0 * sum / (a * a));
}
const std::string GreensFunction2DRefWedgeAbs::dump() const
{
std::ostringstream ss;
ss << "D = " << this->getD() << ", a = " << this->geta()
<< ", r_0 = " << this->getr0() << ", phi = " << this->getphi()
<< std::endl;
return ss.str();
}
//******************************* drawTime ***********************************//
const Real
GreensFunction2DRefWedgeAbs::p_survival_F(const Real t,
const p_survival_params* params)
{
const GreensFunction2DRefWedgeAbs* const gf(params->gf);
const Real rnd(params->rnd);
// to search the t that satisfies 1 - p_survival(t) = rnd.
return 1e0 - gf->p_survival(t) - rnd;
}
const Real GreensFunction2DRefWedgeAbs::drawTime(const Real rnd) const
{
THROW_UNLESS(std::invalid_argument, 0.0<=rnd && rnd <= 1.0);
const Real a = this->a_;
const Real D = this->D_;
if(D == 0e0 || a == std::numeric_limits<Real>::infinity() || rnd == 1e0)
return std::numeric_limits<Real>::infinity();
if(a == this->r0_ || rnd == 0e0)
return 0e0;
p_survival_params params = {this, rnd};
gsl_function F =
{
reinterpret_cast<double (*)(double, void*)>(&p_survival_F), ¶ms
};
// this is not so accurate because
// initial position is not the center of this system.
const Real t_guess(a * a * 0.25 / D);
Real value(GSL_FN_EVAL(&F, t_guess));
Real low(t_guess);
Real high(t_guess);
// to determine high and low border
if(value < 0.0)
{
do
{
high *= 1e1;
value = GSL_FN_EVAL(&F, high);
if(fabs(high) > t_guess * 1e6)
throw std::invalid_argument("could not adjust higher border");
}
while(value <= 0e0);
}
else
{
Real value_prev = value;
do
{
low *= 1e-1;
value = GSL_FN_EVAL(&F, low);
if(fabs(low) <= t_guess * 1e-6 || fabs(value - value_prev) < CUTOFF)
throw std::invalid_argument("could not adjust lower border");
value_prev = value;
}
while(value >= 0e0);
}
//find the root
const gsl_root_fsolver_type* solverType(gsl_root_fsolver_brent);
gsl_root_fsolver* solver(gsl_root_fsolver_alloc(solverType));
const Real t(findRoot(F, solver, low, high, 1e-18, 1e-12,
"GreensFunction2DRefWedgeAbs::drawTime"));
gsl_root_fsolver_free(solver);
return t;
}
//********************************* drawR ************************************//
const Real
GreensFunction2DRefWedgeAbs::p_r_F(const Real r, const p_r_params* params)
{
const GreensFunction2DRefWedgeAbs* const gf(params->gf);
const Real t(params->t);
const Real target(params->target);
return gf->p_int_r(r, t) - target;
}
const Real GreensFunction2DRefWedgeAbs::drawR(const Real rnd, const Real t) const
{
THROW_UNLESS(std::invalid_argument, 0.0<=rnd && rnd <= 1.0);
const Real a = this->a_;
const Real D = this->D_;
const Real r0 = this->r0_;
if(a == r0)
throw std::invalid_argument("a equal r0");
if(t == 0e0 || D == 0e0)
return r0;
if(rnd == 1e0)
return a;//!?
Real p_surv(p_survival(t));
assert(p_surv > 0e0);
p_r_params params = {this, t, rnd * p_surv};
gsl_function F =
{
reinterpret_cast<double (*)(double, void*)>(&p_r_F), ¶ms
};
const Real low(0e0);
const Real high(a);
const gsl_root_fsolver_type* solverType(gsl_root_fsolver_brent);
gsl_root_fsolver* solver(gsl_root_fsolver_alloc(solverType));
const Real r(findRoot(F, solver, low, high, 1e-18, 1e-12,
"GreensFunction2DRefWedgeAbsSym::drawR"));
gsl_root_fsolver_free(solver);
return r;
}
//********************************* drawTheta ********************************//
const Real GreensFunction2DRefWedgeAbs::p_theta_F(const Real theta,
const p_theta_params* params)
{
const GreensFunction2DRefWedgeAbs* const gf(params->gf);
const Real t(params->t);
const Real r(params->r);
const Real rnd(params->rnd);
return gf->p_int_theta(r, theta, t) - rnd;
}
const Real GreensFunction2DRefWedgeAbs::dp_theta_F(const Real theta,
const dp_theta_params* params)
{
const GreensFunction2DRefWedgeAbs* const gf(params->gf);
const Real t(params->t);
const Real rnd(params->rnd);
return gf->dp_int_theta(theta, t) - rnd;
}
const Real GreensFunction2DRefWedgeAbs::drawTheta(const Real rnd,
const Real r,
const Real t) const
{
THROW_UNLESS(std::invalid_argument, 0.0 <= rnd && rnd <= 1.0);
const Real a = this->a_;
const Real D = this->D_;
const Real phi = this->phi_;
// r == 0e0, theta is not defined
if(fabs(r / a) < CUTOFF)
{
throw std::invalid_argument(
(boost::format(
"2DRefWedgeAbs::drawTheta r is too small: r=%f10"
) % r).str());
}
// time or diffusion speed is equal to zero, particle doesn't move.
if(t == 0e0 || D == 0e0)
return 0e0;
const Real int_phi = ((r == a) ? dp_int_phi(t) : p_int_phi(r, t));
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* When t is too large, int_2pi become zero and drawR returns 2pi *
* at any value of rnd. To avoid this, return rnd * theta / 2pi *
* because when t -> \infty the probability density function of theta*
* become uniform distribution *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
if(int_phi == 0e0)
{
std::cout << dump();
std::cout << "Warning: p_int_phi become zero because t is too large."
<< " t = " << t << std::endl;
// throw invalid argument or return 0?
}
// whether theta is positive(true) or negative(false)
bool direction(rnd > 0.5);
const Real new_random_number(direction ? rnd * 2e0 - 1e0 : rnd * 2e0);
if(new_random_number == 1e0)
{
return phi;
}
if(new_random_number == 0e0)
{
return 0e0;
}
Real theta(0e0);
const Real low(0e0);
const Real high(phi * 0.5);
const gsl_root_fsolver_type* solverType(gsl_root_fsolver_brent);
gsl_root_fsolver* solver(gsl_root_fsolver_alloc(solverType));
if(r == a)
{
dp_theta_params params = {this, t, new_random_number * int_phi};
gsl_function F = {
reinterpret_cast<double (*)(double, void*)>(&dp_theta_F), ¶ms
};
theta = findRoot(F, solver, low, high, 1e-18, 1e-12,
"GreensFunction2DRefWedgeAbsSym::drawTheta");
}
else
{
// p_int_theta / int_phi = rnd <=> p_int_theta = rnd * int_phi
p_theta_params params = {this, t, r, new_random_number * int_phi};
gsl_function F = {
reinterpret_cast<double (*)(double, void*)>(&p_theta_F), ¶ms
};
theta = findRoot(F, solver, low, high, 1e-18, 1e-12,
"GreensFunction2DRefWedgeAbsSym::drawTheta");
}
gsl_root_fsolver_free(solver);
// to make initial position zero
if(direction)
{
return theta;
}
else
{
return phi - theta;
}
}
}