-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_correct_generic.py
262 lines (203 loc) · 10.2 KB
/
image_correct_generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import json
import os
import warnings
import sys
import ray
import numpy as np
import hytools as ht
from hytools.io.envi import *
from hytools.topo import calc_topo_coeffs
from hytools.brdf import calc_brdf_coeffs
from hytools.glint import set_glint_parameters
from hytools.masks import mask_create
warnings.filterwarnings("ignore")
np.seterr(divide='ignore', invalid='ignore')
def main():
"""
Main Function for Processing Geospatial Imagery
This function orchestrates the process of reading, correcting, and exporting geospatial imagery
based on the configuration settings specified in a JSON file. It utilizes parallel processing capabilities
provided by Ray to efficiently handle multiple images.
Process Flow:
1. Load Configuration: Reads the JSON configuration file provided as a command line argument.
2. Initialize Ray: Sets up Ray for parallel processing, using the number of CPUs specified in the config.
3. Read Files: Depending on the file type ('envi' or 'neon'), reads the input files and ancillary data.
4. Apply Corrections: Executes various correction algorithms (e.g., TOPO, BRDF, glint) as specified in the config.
5. Export Data: Outputs corrected imagery and correction coefficients, again as specified in the config.
Inputs:
- A single command line argument specifying the path to the JSON configuration file.
The configuration file should contain:
- Input file paths.
- Number of CPUs to use for processing.
- File type (e.g., 'envi', 'neon').
- Correction parameters and settings.
- Export settings for the corrected images and coefficients.
Output:
- Corrected geospatial imagery files.
- Correction coefficients files, if specified in the configuration.
Usage:
- This function is typically used as part of a larger workflow for processing and analyzing geospatial imagery,
particularly when dealing with large datasets or requiring specialized correction techniques.
- To execute, run this script with Python, providing the path to the configuration file as an argument.
"""
config_file = sys.argv[1]
print(config_file)
with open(config_file, 'r') as outfile:
config_dict = json.load(outfile)
#print(config_dict)
images = config_dict["input_files"]
#print(images)
#print(config_dict['file_type'])
if ray.is_initialized():
ray.shutdown()
print("Using %s CPUs." % config_dict['num_cpus'])
ray.init(num_cpus = config_dict['num_cpus'])
HyTools = ray.remote(ht.HyTools)
actors = [HyTools.remote() for image in images]
if config_dict['file_type'] == 'envi':
anc_files = config_dict["anc_files"]
# print([(image,config_dict['file_type'], anc_files[image]) for a,image in zip(actors,images)])
_ = ray.get([a.read_file.remote(image,config_dict['file_type'],
anc_files[image]) for a,image in zip(actors,images)])
elif config_dict['file_type'] == 'neon':
_ = ray.get([a.read_file.remote(image,config_dict['file_type']) for a,image in zip(actors,images)])
_ = ray.get([a.create_bad_bands.remote(config_dict['bad_bands']) for a in actors])
for correction in config_dict["corrections"]:
if correction =='topo':
calc_topo_coeffs(actors,config_dict['topo'])
elif correction == 'brdf':
calc_brdf_coeffs(actors,config_dict)
elif correction == 'glint':
set_glint_parameters(actors,config_dict)
if config_dict['export']['coeffs'] and len(config_dict["corrections"]) > 0:
print("Exporting correction coefficients.")
_ = ray.get([a.do.remote(export_coeffs,config_dict['export']) for a in actors])
if config_dict['export']['image']:
print("Exporting corrected images.")
_ = ray.get([a.do.remote(apply_corrections,config_dict) for a in actors])
ray.shutdown()
def export_coeffs(hy_obj,export_dict):
"""
Exports Correction Coefficients to Files
This function exports the correction coefficients for various corrections applied to geospatial imagery.
It generates a separate file for each type of correction, storing the coefficients in JSON format.
Inputs:
- hy_obj: An object representing the processed imagery data, which includes correction coefficients.
- export_dict: A dictionary containing export settings, such as the output directory and file suffix.
Process:
- Iterates through each correction type present in the 'hy_obj'.
- Constructs a file path for each correction's coefficients based on the settings in 'export_dict'.
- Exports the coefficients to a JSON file.
Supported Corrections:
- Topographic ('topo')
- Glint (currently skipped in this function)
- BRDF ('brdf')
Output:
- JSON files containing correction coefficients for each correction type.
The files are named based on the correction type and include a suffix from 'export_dict'.
Usage:
- Typically used after applying corrections to geospatial imagery data.
- Helps in documenting the coefficients used for corrections, which can be useful for analysis, reproducibility, and auditing.
Note:
- The function currently skips exporting coefficients for 'glint' correction.
"""
for correction in hy_obj.corrections:
coeff_file = export_dict['output_dir']
coeff_file += os.path.splitext(os.path.basename(hy_obj.file_name))[0]
print(coeff_file)
coeff_file += "_%s_coeffs_%s.json" % (correction,export_dict["suffix"])
with open(coeff_file, 'w') as outfile:
if correction == 'topo':
corr_dict = hy_obj.topo
elif correction == 'glint':
continue
else:
corr_dict = hy_obj.brdf
json.dump(corr_dict,outfile)
def apply_corrections(hy_obj,config_dict):
"""
Applies specified corrections to geospatial imagery data and exports the corrected images.
Inputs:
- hy_obj: An object representing the processed imagery data.
- config_dict: A dictionary containing configuration settings for corrections and exports.
Process Overview:
1. Update Header: Modifies the header dictionary with relevant details like 'data ignore value' and 'data type'.
2. Output File Naming: Constructs the output file path based on the provided configuration.
3. Correction and Export:
a. If 'subset_waves' is empty, exports all wavelengths, with optional resampling.
b. If 'subset_waves' contains specific wavelengths, exports only the selected bands.
4. Mask Export: Optionally, exports masks associated with the applied corrections.
5. File Writing: Utilizes the WriteENVI utility to write the corrected data to ENVI format files.
Outputs:
- Corrected imagery files in ENVI format.
- Optionally, mask files indicating areas affected by specific corrections.
Usage:
- This function is used in workflows where geospatial imagery requires corrections like TOPO, BRDF, etc.
- It is a part of a larger processing pipeline, following the application of corrections to the data.
Note:
- The function assumes that the 'hy_obj' has methods like 'get_header', 'iterate', and 'get_band' and attributes like 'corrections' and 'wavelengths'.
- The 'WriteENVI' utility is used for writing the output, which should be predefined or imported.
"""
header_dict = hy_obj.get_header()
header_dict['data ignore value'] = hy_obj.no_data
header_dict['data type'] = 4
output_name = config_dict['export']['output_dir']
output_name += os.path.splitext(os.path.basename(hy_obj.file_name))[0]
output_name += "_%s" % config_dict['export']["suffix"]
#Export all wavelengths
if len(config_dict['export']['subset_waves']) == 0:
if config_dict["resample"] == True:
hy_obj.resampler = config_dict['resampler']
waves= hy_obj.resampler['out_waves']
else:
waves = hy_obj.wavelengths
header_dict['bands'] = len(waves)
header_dict['wavelength'] = waves
writer = WriteENVI(output_name,header_dict)
iterator = hy_obj.iterate(by='line', corrections=hy_obj.corrections,
resample=config_dict['resample'])
while not iterator.complete:
line = iterator.read_next()
writer.write_line(line,iterator.current_line)
writer.close()
#Export subset of wavelengths
else:
waves = config_dict['export']['subset_waves']
bands = [hy_obj.wave_to_band(x) for x in waves]
waves = [round(hy_obj.wavelengths[x],2) for x in bands]
header_dict['bands'] = len(bands)
header_dict['wavelength'] = waves
writer = WriteENVI(output_name,header_dict)
for b,band_num in enumerate(bands):
band = hy_obj.get_band(band_num,
corrections=hy_obj.corrections)
writer.write_band(band, b)
writer.close()
#Export masks
if (config_dict['export']['masks']) and (len(config_dict["corrections"]) > 0):
masks = []
mask_names = []
for correction in config_dict["corrections"]:
for mask_type in config_dict[correction]['apply_mask']:
mask_names.append(correction + '_' + mask_type[0])
masks.append(mask_create(hy_obj, [mask_type]))
header_dict['data type'] = 1
header_dict['bands'] = len(masks)
header_dict['band names'] = mask_names
header_dict['samples'] = hy_obj.columns
header_dict['lines'] = hy_obj.lines
header_dict['wavelength'] = []
header_dict['fwhm'] = []
header_dict['wavelength units'] = ''
header_dict['data ignore value'] = 255
output_name = config_dict['export']['output_dir']
output_name += os.path.splitext(os.path.basename(hy_obj.file_name))[0]
output_name += "_%s_mask" % config_dict['export']["suffix"]
writer = WriteENVI(output_name,header_dict)
for band_num,mask in enumerate(masks):
mask = mask.astype(int)
mask[~hy_obj.mask['no_data']] = 255
writer.write_band(mask,band_num)
del masks
if __name__== "__main__":
main()