-
Notifications
You must be signed in to change notification settings - Fork 32
/
configs.py
96 lines (76 loc) · 4 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# -*- coding: utf-8 -*-
import argparse
import torch
from pathlib import Path
import pprint
save_dir = Path('../PGL-SUM/Summaries/PGL-SUM/exp1')
def str2bool(v):
""" Transcode string to boolean.
:param str v: String to be transcoded.
:return: The boolean transcoding of the string.
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
class Config(object):
def __init__(self, **kwargs):
"""Configuration Class: set kwargs as class attributes with setattr"""
self.log_dir, self.score_dir, self.save_dir = None, None, None
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for k, v in kwargs.items():
setattr(self, k, v)
self.set_dataset_dir(self.video_type)
def set_dataset_dir(self, video_type='TVSum'):
""" Function that sets as class attributes the necessary directories for logging important training information.
:param str video_type: The Dataset being used, SumMe or TVSum.
"""
self.log_dir = save_dir.joinpath(video_type, 'logs/split' + str(self.split_index))
self.score_dir = save_dir.joinpath(video_type, 'results/split' + str(self.split_index))
self.save_dir = save_dir.joinpath(video_type, 'models/split' + str(self.split_index))
def __repr__(self):
"""Pretty-print configurations in alphabetical order"""
config_str = 'Configurations\n'
config_str += pprint.pformat(self.__dict__)
return config_str
def get_config(parse=True, **optional_kwargs):
""" Get configurations as attributes of class
1. Parse configurations with argparse.
2. Create Config class initialized with parsed kwargs.
3. Return Config class.
"""
parser = argparse.ArgumentParser()
# Mode
parser.add_argument('--mode', type=str, default='train', help='Mode for the configuration [train | test]')
parser.add_argument('--verbose', type=str2bool, default='false', help='Print or not training messages')
parser.add_argument('--video_type', type=str, default='SumMe', help='Dataset to be used')
# Model
parser.add_argument('--input_size', type=int, default=1024, help='Feature size expected in the input')
parser.add_argument('--seed', type=int, default=12345, help='Chosen seed for generating random numbers')
parser.add_argument('--fusion', type=str, default="add", help="Type of feature fusion")
parser.add_argument('--n_segments', type=int, default=4, help='Number of segments to split the video')
parser.add_argument('--pos_enc', type=str, default="absolute", help="Type of pos encoding [absolute|relative|None]")
parser.add_argument('--heads', type=int, default=8, help="Number of global heads for the attention module")
# Train
parser.add_argument('--n_epochs', type=int, default=200, help='Number of training epochs')
parser.add_argument('--batch_size', type=int, default=20, help='Size of each batch in training')
parser.add_argument('--clip', type=float, default=5.0, help='Max norm of the gradients')
parser.add_argument('--lr', type=float, default=5e-5, help='Learning rate used for the modules')
parser.add_argument('--l2_req', type=float, default=1e-5, help='Regularization factor')
parser.add_argument('--split_index', type=int, default=0, help='Data split to be used [0-4]')
parser.add_argument('--init_type', type=str, default="xavier", help='Weight initialization method')
parser.add_argument('--init_gain', type=float, default=None, help='Scaling factor for the initialization methods')
if parse:
kwargs = parser.parse_args()
else:
kwargs = parser.parse_known_args()[0]
# Namespace => Dictionary
kwargs = vars(kwargs)
kwargs.update(optional_kwargs)
return Config(**kwargs)
if __name__ == '__main__':
config = get_config()
import ipdb
ipdb.set_trace()