forked from yfeng95/face3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_300WLP.py
73 lines (63 loc) · 2.93 KB
/
fit_300WLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from multiprocessing.pool import IMapUnorderedIterator
import os
import multiprocessing as mp
from pathlib import Path
from numba.core.utils import format_time
from face3d.face_model import FaceModel
import tqdm
import cv2
import scipy.io as sio
import glob
import numpy as np
import utils
from utils import draw_pts
import shutil
import random
if __name__=='__main__':
shutil.rmtree('300WLP_3ddfa', ignore_errors=True)
os.makedirs('300WLP_3ddfa', exist_ok=True)
os.makedirs('300WLP_3ddfa/300WLP_3ddfa-verified', exist_ok=True)
model = FaceModel(n_shape=40, n_exp=20)
img_list = list(Path('300WLP').glob('**/*.jpg'))
bag = []
print(f'Push item to bag: ')
for img_path in tqdm.tqdm(img_list):
pts_path = str(img_path).replace('jpg', 'mat')
bag.append((str(img_path), pts_path))
def task(item):
img_path, pts_path = item
name = img_path.split('/')[-1].split('.')[0]
original_img = cv2.imread(img_path)
original_pts = sio.loadmat(pts_path)['pt3d']
img, info = model.generate_3ddfa_params(original_img, original_pts, False, expand_ratio=1.)
img_out_path = os.path.join('300WLP_3ddfa/300WLP_3ddfa-verified', f'{name}.jpg')
params_out_path = os.path.join('300WLP_3ddfa/300WLP_3ddfa-verified', f'{name}.mat')
cv2.imwrite(img_out_path, img)
sio.savemat(params_out_path, info)
# fliplr_img, fliplr_pts = utils.fliplr_face_landmarks(original_img, original_pts, reverse=False)
# expand_ratio = random.uniform(1., 1.4)
# fliplr_img, fliplr_params = model.generate_3ddfa_params(fliplr_img, fliplr_pts, expand_ratio=expand_ratio)
# fliplr_img_out_path = os.path.join('300WLP_3ddfa/300WLP_3ddfa-verified', f'{name}_fliplr.jpg')
# fliplr_params_out_path = os.path.join('300WLP_3ddfa/300WLP_3ddfa-verified', f'{name}_fliplr.mat')
# cv2.imwrite(fliplr_img_out_path, fliplr_img)
# sio.savemat(fliplr_params_out_path, fliplr_params)
# foo_pts = model.reconstruct_vertex(fliplr_img, fliplr_params['params'], de_normalize=False)[:,:2][model.bfm.kpt_ind]
# for pts in foo_pts:
# pts = pts.astype(int)
# fliplr_img = cv2.circle(fliplr_img, pts,2,(0,255,0), -1, 8)
# cv2.imwrite(f'test_flip_image.jpg', fliplr_img)
# foo_pts = model.reconstruct_vertex(img, info['params'], de_normalize=False)[:,:2][model.bfm.kpt_ind]
# for pts in foo_pts:
# pts = pts.astype(int)
# img = cv2.circle(img, pts,2,(0,255,0), -1, 8)
# cv2.imwrite(f'test_images.jpg', img)
# import ipdb; ipdb.set_trace(context=10)
# import ipdb; ipdb.set_trace(context=10)
# import ipdb; ipdb.set_trace(context=10)
# cv2.imshow('', img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# with mp.Pool(2) as p:
# r = list(tqdm.tqdm(p.imap(task, bag), total=len(bag)))
for item in tqdm.tqdm(bag):
task(item)