-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathpacking3d.py
430 lines (354 loc) · 13.9 KB
/
packing3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright 2022 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from itertools import combinations, permutations
from typing import Tuple
import numpy as np
from dimod import Binary, ConstrainedQuadraticModel, Real, SampleSet, quicksum
from dwave.system import LeapHybridCQMSampler
from mip_solver import MIPCQMSolver
from utils import plot_cuboids, print_cqm_stats, read_instance, write_solution_to_file
class Cases:
"""Class for representing cuboid item data in a 3D bin packing problem.
Args:
data: dictionary containing raw information for both bins and cases
"""
def __init__(self, data):
self.case_ids = np.repeat(data["Case ID"], data["Quantity"])
self.num_cases = np.sum(data["Quantity"], dtype=np.int32)
self.length = np.repeat(data["Length"], data["Quantity"])
self.width = np.repeat(data["Width"], data["Quantity"])
self.height = np.repeat(data["Height"], data["Quantity"])
print(f"Number of cases: {self.num_cases}")
class Bins:
"""Class for representing cuboid container data in a 3D bin packing problem.
Args:
data: dictionary containing raw information for both bins and cases
cases: Instance of ``Cases``, representing cuboid items packed into containers.
"""
def __init__(self, data, cases):
self.length = data["bin_dimensions"][0]
self.width = data["bin_dimensions"][1]
self.height = data["bin_dimensions"][2]
self.num_bins = data["num_bins"]
self.lowest_num_bin = int(
np.ceil(
np.sum(cases.length * cases.width * cases.height)
/ (self.length * self.width * self.height)
)
)
if self.lowest_num_bin > self.num_bins:
raise RuntimeError(
f"number of bins is at least {self.lowest_num_bin}, "
+ "try increasing the number of bins"
)
print(f"Minimum Number of bins required: {self.lowest_num_bin}")
class Variables:
"""Class that collects all CQM model variables for the 3D bin packing problem.
Args:
cases: Instance of ``Cases``, representing cuboid items packed into containers.
bins: Instance of ``Bins``, representing containers to pack cases into.
"""
def __init__(self, cases: Cases, bins: Bins):
num_cases = cases.num_cases
num_bins = bins.num_bins
lowest_num_bin = bins.lowest_num_bin
self.x = {
i: Real(f"x_{i}", lower_bound=0, upper_bound=bins.length * bins.num_bins)
for i in range(num_cases)
}
self.y = {
i: Real(f"y_{i}", lower_bound=0, upper_bound=bins.width) for i in range(num_cases)
}
self.z = {
i: Real(f"z_{i}", lower_bound=0, upper_bound=bins.height) for i in range(num_cases)
}
self.bin_height = {
j: Real(label=f"upper_bound_{j}", upper_bound=bins.height) for j in range(num_bins)
}
# the first case always goes to the first bin
self.bin_loc = {
(i, j): Binary(f"case_{i}_in_bin_{j}") if num_bins > 1 else 1
for i in range(1, num_cases)
for j in range(num_bins)
}
self.bin_loc.update({(0, j): int(j == 0) for j in range(num_bins)})
self.bin_on = {
j: 1 if j < lowest_num_bin else Binary(f"bin_{j}_is_used") for j in range(num_bins)
}
self.o = {(i, k): Binary(f"o_{i}_{k}") for i in range(num_cases) for k in range(6)}
self.selector = {
(i, j, k): Binary(f"sel_{i}_{j}_{k}")
for i, j in combinations(range(num_cases), r=2)
for k in range(6)
}
def _add_bin_on_constraint(
cqm: ConstrainedQuadraticModel, vars: Variables, bins: Bins, cases: Cases
):
num_cases = cases.num_cases
num_bins = bins.num_bins
lowest_num_bin = bins.lowest_num_bin
if num_bins > 1:
for j in range(lowest_num_bin, num_bins):
cqm.add_constraint(
(1 - vars.bin_on[j]) * quicksum(vars.bin_loc[i, j] for i in range(num_cases)) <= 0,
label=f"bin_on_{j}",
)
for j in range(lowest_num_bin, num_bins - 1):
cqm.add_constraint(vars.bin_on[j + 1] - vars.bin_on[j] <= 0, label=f"bin_use_order_{j}")
def _add_orientation_constraints(
cqm: ConstrainedQuadraticModel, vars: Variables, cases: Cases
) -> list:
num_cases = cases.num_cases
dx = {}
dy = {}
dz = {}
for i in range(num_cases):
p1 = list(permutations([cases.length[i], cases.width[i], cases.height[i]]))
dx[i] = 0
dy[i] = 0
dz[i] = 0
for j, (a, b, c) in enumerate(p1):
dx[i] += a * vars.o[i, j]
dy[i] += b * vars.o[i, j]
dz[i] += c * vars.o[i, j]
for i in range(num_cases):
cqm.add_discrete(quicksum([vars.o[i, k] for k in range(6)]), label=f"orientation_{i}")
return [dx, dy, dz]
def _add_geometric_constraints(
cqm: ConstrainedQuadraticModel,
vars: Variables,
bins: Bins,
cases: Cases,
effective_dimensions: list,
):
num_cases = cases.num_cases
num_bins = bins.num_bins
dx, dy, dz = effective_dimensions
# adding discrete constraints first
if num_bins > 1:
for i in range(1, num_cases):
cqm.add_discrete(
quicksum([vars.bin_loc[i, j] for j in range(num_bins)]),
label=f"case_{i}_max_packed",
)
for i, k in combinations(range(num_cases), r=2):
cqm.add_discrete(
quicksum([vars.selector[i, k, s] for s in range(6)]), label=f"discrete_{i}_{k}"
)
for i, k in combinations(range(num_cases), r=2):
for j in range(num_bins):
cases_on_same_bin = vars.bin_loc[i, j] * vars.bin_loc[k, j]
cqm.add_constraint(
-(2 - cases_on_same_bin - vars.selector[i, k, 0]) * num_bins * bins.length
+ (vars.x[i] + dx[i] - vars.x[k])
<= 0,
label=f"overlap_{i}_{k}_{j}_0",
)
cqm.add_constraint(
-(2 - cases_on_same_bin - vars.selector[i, k, 1]) * bins.width
+ (vars.y[i] + dy[i] - vars.y[k])
<= 0,
label=f"overlap_{i}_{k}_{j}_1",
)
cqm.add_constraint(
-(2 - cases_on_same_bin - vars.selector[i, k, 2]) * bins.height
+ (vars.z[i] + dz[i] - vars.z[k])
<= 0,
label=f"overlap_{i}_{k}_{j}_2",
)
cqm.add_constraint(
-(2 - cases_on_same_bin - vars.selector[i, k, 3]) * num_bins * bins.length
+ (vars.x[k] + dx[k] - vars.x[i])
<= 0,
label=f"overlap_{i}_{k}_{j}_3",
)
cqm.add_constraint(
-(2 - cases_on_same_bin - vars.selector[i, k, 4]) * bins.width
+ (vars.y[k] + dy[k] - vars.y[i])
<= 0,
label=f"overlap_{i}_{k}_{j}_4",
)
cqm.add_constraint(
-(2 - cases_on_same_bin - vars.selector[i, k, 5]) * bins.height
+ (vars.z[k] + dz[k] - vars.z[i])
<= 0,
label=f"overlap_{i}_{k}_{j}_5",
)
def _add_boundary_constraints(
cqm: ConstrainedQuadraticModel,
vars: Variables,
bins: Bins,
cases: Cases,
effective_dimensions: list,
):
num_cases = cases.num_cases
num_bins = bins.num_bins
dx, dy, dz = effective_dimensions
for i in range(num_cases):
cqm.add_constraint(vars.y[i] + dy[i] <= bins.width, label=f"maxy_{i}_less")
for j in range(num_bins):
cqm.add_constraint(
vars.z[i] + dz[i] - vars.bin_height[j] - (1 - vars.bin_loc[i, j]) * bins.height
<= 0,
label=f"maxx_height_{i}_{j}",
)
cqm.add_constraint(
vars.x[i]
+ dx[i]
- bins.length * (j + 1)
- (1 - vars.bin_loc[i, j]) * num_bins * bins.length
<= 0,
label=f"maxx_{i}_{j}_less",
)
if j > 0:
cqm.add_constraint(
bins.length * j * vars.bin_loc[i, j] - vars.x[i] <= 0,
label=f"maxx_{i}_{j}_greater",
)
def _define_objective(
cqm: ConstrainedQuadraticModel,
vars: Variables,
bins: Bins,
cases: Cases,
effective_dimensions: list,
):
num_cases = cases.num_cases
num_bins = bins.num_bins
lowest_num_bin = bins.lowest_num_bin
dx, dy, dz = effective_dimensions
# First term of objective: minimize average height of cases
first_obj_term = quicksum(vars.z[i] + dz[i] for i in range(num_cases)) / num_cases
# Second term of objective: minimize height of the case at the top of the
# bin
second_obj_term = quicksum(vars.bin_height[j] for j in range(num_bins))
# Third term of the objective: minimize the number of used bins
third_obj_term = quicksum(vars.bin_on[j] for j in range(lowest_num_bin, num_bins))
first_obj_coefficient = 1
second_obj_coefficient = 1
third_obj_coefficient = bins.height
cqm.set_objective(
first_obj_coefficient * first_obj_term
+ second_obj_coefficient * second_obj_term
+ third_obj_coefficient * third_obj_term
)
def build_cqm(vars: Variables, bins: Bins, cases: Cases) -> Tuple[ConstrainedQuadraticModel, list]:
"""Builds the CQM model from the problem variables and data.
Args:
vars: Instance of ``Variables`` that defines the complete set of variables
for the 3D bin packing problem.
bins: Instance of ``Bins``, representing containers to pack cases into.
cases: Instance of ``Cases``, representing cuboid items packed into containers.
Returns:
A ``dimod.CQM`` object that defines the 3D bin packing problem.
effective_dimensions: List of case dimensions based on orientations of cases.
"""
cqm = ConstrainedQuadraticModel()
effective_dimensions = _add_orientation_constraints(cqm, vars, cases)
_add_geometric_constraints(cqm, vars, bins, cases, effective_dimensions)
_add_bin_on_constraint(cqm, vars, bins, cases)
_add_boundary_constraints(cqm, vars, bins, cases, effective_dimensions)
_define_objective(cqm, vars, bins, cases, effective_dimensions)
return cqm, effective_dimensions
def call_solver(
cqm: ConstrainedQuadraticModel, time_limit: float, use_cqm_solver: bool = True
) -> SampleSet:
"""Helper function to call the CQM Solver.
Args:
cqm: A ``CQM`` object that defines the 3D bin packing problem.
time_limit: Time limit parameter to pass on to the CQM sampler.
Returns:
A ``dimod.SampleSet`` that represents the best feasible solution found.
"""
if use_cqm_solver:
sampler = LeapHybridCQMSampler()
res = sampler.sample_cqm(cqm, time_limit=time_limit, label="3d bin packing")
else:
sampler = MIPCQMSolver()
res = sampler.sample_cqm(cqm, time_limit=time_limit)
res.resolve()
feasible_sampleset = res.filter(lambda d: d.is_feasible)
print(feasible_sampleset)
try:
best_feasible = feasible_sampleset.first.sample
return best_feasible
except ValueError:
raise RuntimeError(
"Sampleset is empty, try increasing time limit or " + "adjusting problem config."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_filepath",
type=str,
nargs="?",
help="Filename with path to bin-packing data file.",
default="input/sample_data_1.txt",
)
parser.add_argument(
"--output_filepath",
type=str,
nargs="?",
help="Path for the output solution file.",
default=None,
)
parser.add_argument(
"--time_limit",
type=float,
nargs="?",
help="Time limit for the hybrid CQM Solver to run in" " seconds.",
default=20,
)
parser.add_argument(
"--use_cqm_solver",
type=bool,
nargs="?",
help="Flag to either use CQM or MIP solver",
default=True,
)
parser.add_argument(
"--html_filepath",
type=str,
nargs="?",
help="Filename with path to plot html file.",
default=None,
)
parser.add_argument(
"--color_coded",
type=bool,
nargs="?",
help="View plot with coded or randomly colored cases.",
default=False,
)
args = parser.parse_args()
output_filepath = args.output_filepath
time_limit = args.time_limit
use_cqm_solver = args.use_cqm_solver
html_filepath = args.html_filepath
color_coded = args.color_coded
data = read_instance(args.data_filepath)
cases = Cases(data)
bins = Bins(data, cases)
vars = Variables(cases, bins)
cqm, effective_dimensions = build_cqm(vars, bins, cases)
print_cqm_stats(cqm)
best_feasible = call_solver(cqm, time_limit, use_cqm_solver)
if output_filepath is not None:
write_solution_to_file(
output_filepath, cqm, vars, best_feasible, cases, bins, effective_dimensions
)
fig = plot_cuboids(best_feasible, vars, cases, bins, effective_dimensions, color_coded)
if html_filepath is not None:
fig.write_html(html_filepath)
fig.show()