-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathsaveWav.py
37 lines (28 loc) · 1.18 KB
/
saveWav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cmath
import numpy as np
import librosa
from audioUtils.hparams import hparams
from audioUtils.audio import _griffin_lim, seg2wav, inv_preemphasis
import os
_inv_mel_basis = np.linalg.pinv(librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=80))
def saveWav(mel, fpath):
mel = mel * 8 - 4
generated_wav = vocoder.infer_waveform(mel)
librosa.output.write_wav(fpath, generated_wav.astype(np.float32),
hparams.sample_rate)
def mel2wav(mel):
mel = np.clip(mel, 0, 1)
mel = mel * 125 - 120
mel = np.power(10.0, mel * 0.05)
spec = _inv_mel_basis.dot(mel)
generated_wav = _griffin_lim(spec, hparams)
generated_wav = inv_preemphasis(generated_wav, hparams.preemphasis, hparams.preemphasize)
return generated_wav, hparams.sample_rate
if __name__ == "__main__":
import pickle
# f = open("/home/kangled/datasets/VCTK/VCTK-Corpus/mydata/p229_p229_001.pkl", "rb")
# data = pickle.load(f)
# f.close()
# saveWav(data['spec'], "/home/kangled/test.wav")
a = np.load("/scratch/kangled/autovc/Epoch[003]p261_p261_184p343.npy")
saveWav(a.T, "/home/kangled/test.wav")