-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper.py
66 lines (56 loc) · 2.04 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import json
import pandas as pd
import matplotlib.pyplot as plt
import nltk
from sklearn.feature_extraction.text import CountVectorizer
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
from nltk.corpus import stopwords
from wordcloud import WordCloud, STOPWORDS
def load_dataset(path, test=True):
'''Convert samples in JSON to dataframe
0 if the text is AI-generated
1 if the text is human-generated
'''
data = []
columns = ['id', 'text', 'label']
with open(path) as f:
lines = f.readlines()
if test:
for line in lines:
line_dict = json.loads(line)
data.append([line_dict['id'], line_dict['text'], line_dict['label']])
else:
columns = columns[:-1]
for line in lines:
line_dict = json.loads(line)
data.append([line_dict['id'], line_dict['text']])
return pd.DataFrame(data, columns=columns).set_index('id')
def get_text_len(row):
return len(row['text'].split(' '))
def plot_word_cloud(df):
'''Plot word cloud of dataframe content'''
# Without stop words
word_cloud = WordCloud(width=800, height=800, background_color='white', stopwords=STOPWORDS).generate(" ".join(df['text']))
plt.figure(figsize=(6,6))
plt.imshow(word_cloud)
plt.axis('off')
plt.tight_layout()
plt.show()
def get_top_ngram(text, n=3, top=10):
stop=set(stopwords.words('english'))
new= text.str.split()
new=new.values.tolist()
corpus=[word for i in new for word in i]
def _get_top_ngram(corpus, n=None):
vec = CountVectorizer(ngram_range=n).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx])
for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:top]
top_n_bigrams=_get_top_ngram(text,n)[:top]
x,y=map(list,zip(*top_n_bigrams))
return x