-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
85 lines (77 loc) · 2.39 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Author: David Corre, IAP, [email protected]
The setup script.
"""
from setuptools import setup, find_packages
with open("README.md") as readme_file:
readme = readme_file.read()
with open("HISTORY.rst") as history_file:
history = history_file.read()
requirements = [
"numpy",
"astropy",
"matplotlib",
"Sphinx",
"twine",
"h5py",
"keras",
"tensorflow",
"opencv-python-headless",
"multidict",
"async-timeout",
"attrs",
"chardet",
]
setup_requirements = ["pytest-runner", "flake8", "bumpversion", "wheel", "twine"]
test_requirements = [
"pytest",
"pytest-cov",
"pytest-console-scripts",
"pytest-html",
"watchdog",
]
setup(
author="David Corre",
author_email="[email protected]",
classifiers=[
"Development Status :: 4 - Beta",
"Topic :: Scientific/Engineering :: Astronomy",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
],
description="CNN based tools to help identification of astronomical transients.",
entry_points={
"console_scripts": [
"otrain-convert = otrain.cli.convert:main",
"otrain-train = otrain.cli.train:main",
"otrain-infer = otrain.cli.infer:main",
"otrain-checkinfer = otrain.cli.checkinfer:main",
"otrain-diagnostics = otrain.cli.diagnostic:main",
"otrain-plot-results = otrain.cli.plot_results:main",
"otrain-optimise-dataset-size = otrain.cli.optimise_dataset_size:main",
"otrain-grad-cam = otrain.cli.grad_cam:main",
],
},
install_requires=requirements,
license="MIT license",
long_description=readme,
long_description_content_type="text/markdown",
include_package_data=True,
keywords=["transients", "detection pipeline", "astronomy", "CNN"],
name="otrain",
packages=find_packages(),
setup_requires=setup_requirements,
test_suite="tests",
tests_require=test_requirements,
# url='https://github.com/dcorre/otrain',
version="0.1.0",
zip_safe=False,
)