-
YOLO v5 git clone
-
package installation (requirements.txt)
- %cd /contents/yolov5/
- !pip install -r requirements.txt
-
dataset 구성
- train: 9 internal CCTV images of the mall
- validation: 9 internal CCTV images in different places from train data (some overlap)
-
augmentation
- augment each of the train images by 11 to create 99 train images.
- validation images are not augmented.
# augmentation filter seq1 = iaa.Affine(scale={'x':(0.5, 1.5), 'y':(0.5, 1.5)}) # 늘리기 seq2 = iaa.Affine(translate_percent={'x': (-0.2, 0.2), 'y':(-0.2, 0.2)}) # 옆으로 밀기 seq3 = iaa.Affine(translate_px={"x": (-20, 20), "y": (-20, 20)}) # 위아래로 늘리기 seq4 = iaa.Affine(rotate=(-45, 45)) # 사진 45도 돌리기 seq5 = iaa.Affine(shear=(-16, 16)) # 대각선으로 늘리기 seq7= iaa.Sequential([ iaa.Multiply((1.2, 1.5)), iaa.Fliplr(1.0) ]) # 밝기 변화 + 좌우반전 seq8 = iaa.Grayscale(alpha=1.0) # 회색 seq9 = iaa.Sequential([iaa.Dropout((0.05, 0.1), per_channel=0.5), iaa.Multiply((0.3, 1.5)), iaa.ChannelShuffle(p=1.0)]) # dropout, 픽셀 조정 seq10 = iaa.GaussianBlur(sigma=1.5) # 흐리게 seq11 = iaa.Rot90(1) # 90도 회전
-
test 결과
-
dataset 구성
- train video:
- (BLACKPINK Full Cam) lovesick girls full cam https://www.youtube.com/watch?v=Iq6wkVsaCq0
- BLACKPINK - ‘Lovesick Girls’ 1025 SBS Inkigayo : NO.1 OF THE WEEK https://www.youtube.com/watch?v=MBStYsiE618
- test video:
- (BLACKPINK Encore Fancam) | @SBS Inkigayo_2020.10.25. https://www.youtube.com/watch?v=qMsoWTlBCWc
- train video:
-
labeling
- using YOLO mark
-
test 결과
(1) Faster R-CNN
(2) YOLO v1
(3) YOLO v2
(4) YOLO v3
(5) YOLO v3 Pytorch
- YOLOv3 를 Pytorch 로 구현하는 코드는 이 Github Repo의 코드를 참고했습니다.