-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdelta_robot.cpp
269 lines (218 loc) · 7.49 KB
/
delta_robot.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2015 Google, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <sstream>
#include <fstream>
#include <algorithm>
#include <thread>
#include "debug.h"
#include "delta_robot.h"
using namespace ev3;
using namespace std;
void delta_robot::volume::init() {
min_ = -std::numeric_limits<float>::infinity();
max_ = std::numeric_limits<float>::infinity();
min_.z = z_;
for (int i = 0; i < 3; i++) {
min_ = max(min_, sphere(i) - vector3f(r_));
max_ = min(max_, sphere(i) + vector3f(r_));
}
}
delta_robot::volume delta_robot::work_volume(float epsilon) const {
static const float cos30 = sqrt(3.0f)/2;
static const float sin30 = 0.5f;
float b = base + cos(theta_max*pi/180)*bicep - effector;
float z_min = -bicep + forearm;
for (int i = 0; i < 3; i++) {
float theta = (theta_max - arms[i]->min)*pi/180;
z_min = max(z_min, sin(theta)*bicep + forearm);
}
// Position of the elbows.
return volume(
vector3f(-b*cos30, -b*sin30, bicep),
vector3f( b*0.0f, b, bicep),
vector3f( b*cos30, -b*sin30, bicep),
forearm - 1, // TODO: Why??
z_min,
epsilon);
}
vector3f delta_robot::raw_to_position(const vector3i &raw) const {
vector3f theta(
theta_max - raw.x,
theta_max - raw.y,
theta_max - raw.z);
theta *= pi/180;
static const float cos30 = sqrt(3.0f)/2;
static const float sin30 = 0.5f;
// Distance of the elbow to the base in the XY plane, less the effector.
float abs_xy0 = bicep*cos(theta.x) + (base - effector);
float abs_xy1 = bicep*cos(theta.y) + (base - effector);
float abs_xy2 = bicep*cos(theta.z) + (base - effector);
// Position of the elbows.
vector3f P1(-abs_xy0*cos30, -abs_xy0*sin30, bicep*sin(theta.x));
vector3f P2( abs_xy1*0.0f, abs_xy1, bicep*sin(theta.y));
vector3f P3( abs_xy2*cos30, -abs_xy2*sin30, bicep*sin(theta.z));
// The position of the effector is now a sphere intersection problem, there
// are 3 spheres of radius 'forearm' at each e.
// Construct a basis where one sphere is at 0, the next sphere is on the X axis,
// the last sphere is on the XY plane.
P2 -= P1;
P3 -= P1;
float d = abs(P2);
vector3f X = P2 / d;
float i = dot(X, P3);
vector3f Y = P3 - i*X;
Y /= abs(Y);
float j = dot(Y, P3);
vector3f Z = cross(Y, X);
float x = d/2;
float y = (i*i + j*j)/(2*j) - (i/j)*x;
float zz = forearm*forearm - x*x - y*y;
if (zz < 0)
throw runtime_error("forward kinematics has no solutions");
float z = sqrt(zz);
return P1 + X*x + Y*y + Z*z;
}
static float position_to_raw_YZ(vector3f x0, float base, float bicep, float forearm, float effector) {
// We want the location of the wrist relative to the shoulder.
x0.y += effector - base;
float A = (dot(x0, x0) + bicep*bicep - forearm*forearm)/(2*x0.z);
float B = x0.y/x0.z;
// Solve quadratic.
float a = B*B + 1;
float b = -2*A*B;
float c = A*A - bicep*bicep;
float D = b*b - 4*a*c;
if (D < 0.0f)
throw runtime_error("inverse kinematics has no solutions");
float y = (-b + sqrt(D))/(2*a);
float z = A - y*B;
return atan2(z, y);
}
vector3i delta_robot::position_to_raw(const vector3f &x) const {
static const float cos120 = -0.5f;
static const float sin120 = sqrt(3.0f)/2;
vector3f theta(
position_to_raw_YZ(
vector3f(x.x*cos120 + x.y*sin120, x.x*-sin120 + x.y*cos120, x.z),
base, bicep, forearm, effector),
position_to_raw_YZ(
x,
base, bicep, forearm, effector),
position_to_raw_YZ(
vector3f(x.x*cos120 + x.y*-sin120, x.x*sin120 + x.y*cos120, x.z),
base, bicep, forearm, effector)
);
theta *= 180/pi;
return vector3i(
theta_max - static_cast<int>(floor(theta.x + 0.5f)),
theta_max - static_cast<int>(floor(theta.y + 0.5f)),
theta_max - static_cast<int>(floor(theta.z + 0.5f)));
}
void delta_robot::set_raw_position_sp(const vector3i &x) {
if (!is_raw_position_reachable(x))
throw std::runtime_error("position is unreachable");
dbg(3) << "delta_robot setpoint -> " << x << endl;
arms[0]->set_position_sp(x.x);
arms[1]->set_position_sp(x.y);
arms[2]->set_position_sp(x.z);
}
void delta_robot::init() {
const auto timestep = chrono::milliseconds(100);
const int stall_threshold = 50; // steps.
const int speed = 150; // steps per second.
dbg(1) << "initializing delta robot..." << endl;
// Start running the motors.
for (auto a : arms) {
a->reset();
a->run();
dbg(2) << " arm " << a->port_name() << " reset" << endl;
}
dbg(2) << " finding theta_max..." << endl;
// Set the motors to run in reverse indefinitely.
for (auto a : arms)
a->set_position_sp([=](int x, int t, int dt) { return (t*-speed)/1000; });
while (is_in_transit()) {
for (auto a : arms) {
if (a->is_in_transit() && abs(a->position() - a->position_sp()) > stall_threshold) {
a->reset(-1);
a->stop();
dbg(2) << " found theta_max for arm " << a->port_name() << endl;
}
}
this_thread::sleep_for(timestep);
}
// Find the lower limits of each arm.
for (auto a : arms) {
dbg(2) << " finding theta_min for arm " << a->port_name() << "..." << endl;
for (auto i : arms) {
if (a != i) {
int x0 = i->position();
// Move the motor to the top.
i->set_position_sp([=] (int x, int t, int dt) { return max(0, x0 - (t*speed)/1000); });
} else {
i->set_position_sp([=] (int x, int t, int dt) { return (t*speed)/1000; });
}
i->run();
}
while (true) {
if (abs(a->position_sp() - a->position()) > stall_threshold) {
a->min = a->position();
dbg(2) << " found theta_min=" << a->min << endl;
break;
}
this_thread::sleep_for(timestep);
}
}
// Reset the motors.
for (auto a : arms) {
a->run();
}
dbg(1) << " done" << endl;
set_position_sp(work_volume().center());
// While waiting for the effector to center, run some tests.
test();
this_thread::sleep_for(chrono::milliseconds(50));
}
void delta_robot::test() const {
volume v = work_volume();
vector3f min, max;
std::tie(min, max) = v.bounds();
dbg(1) << "delta robot work volume min=" << min << ", max=" << max << endl;
float tolerance = 3*abs(max - min)/100;
int fails = 0;
for (int i = 0; i < 100; i++) {
vector3f x;
do {
x = randv3f(min, max);
} while(!v.contains(x));
try {
vector3i raw = position_to_raw(x);
if (!is_raw_position_reachable(raw)) {
cerr << "position_to_raw gave unreachable solution at x = " << x << " (raw = " << raw << ")" << endl;
fails++;
}
vector3f dx = x - raw_to_position(raw);
if (abs(dx) > tolerance) {
cerr << "position_to_raw not invertible at x = " << x << " (||dx|| = " << abs(dx) << ", dx = " << dx << ")" << endl;
fails++;
}
} catch(runtime_error &ex) {
cerr << "Failed to invert position x = " << x << ": " << ex.what() << endl;
fails++;
}
}
if (fails > 0)
cerr << "Warning! " << fails << " tests failed." << endl << endl;
}