-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampler.py
249 lines (217 loc) · 10.3 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Code for the actor sampler, for generating datasets for the critic.
"""
import os
import time
import enum
import gzip
import pickle
import logging
import traceback
import psutil
import numpy as np
import multiprocessing as mp
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import pyscipopt
import scip_utilities
# from wurlitzer import sys_pipes
from actor.model import GCNPolicy
from scipy.special import softmax
from pathlib import Path
class ActorSampler(mp.Process, pyscipopt.Branchrule):
def __init__(self, parameters_path, nb_solving_stats_samples, id_):
super().__init__()
self.parameters_path = parameters_path
self.instance_queue = mp.SimpleQueue()
self.nb_solving_stats_samples = nb_solving_stats_samples
self.id = id_
self.seed = id_
self.actor = None
self._sample_count = 0
self._benchmark = {}
self._logger = None
self._reward = None
self._return = None
self._reoptimization_count = None
self._nb_steps = None
self._actor_weights = None
def run(self):
self.configure_logger()
try:
self.load_actor()
# DEBUG
while True:
message = self.instance_queue.get()
if message['type'] == Message.NEW_INSTANCE:
instance_path = str(message['instance_path'])
solving_stats_output_dir = message['solving_stats_output_dir']
if solving_stats_output_dir is not None:
solving_stats_output_dir = Path(solving_stats_output_dir)/str(self.id)
solving_stats_output_dir.mkdir(parents=True, exist_ok=True)
elif message['type'] == Message.STOP:
break
else:
raise ValueError(f"Unrecognized message {message}")
self.actor = tfe.defun(self._actor_weights.call,
input_signature=self._actor_weights.input_signature)
tf.set_random_seed(self.seed)
tf.reset_default_graph()
model = pyscipopt.Model()
model.setIntParam('display/verblevel', 0)
model.readProblem(instance_path)
scip_utilities.init_scip_params(model, seed=self.seed)
recorder = SolvingStatsRecorder(sampler=self)
model.includeEventhdlr(recorder, "SolvingStatsRecorder", "")
model.includeBranchrule(branchrule=self,
name="My branching rule", desc="",
priority=666666, maxdepth=-1, maxbounddist=1)
self._reward = NbNodesRewards(model)
self._return = 0.0
self._nb_steps = 0
# DEBUG
self._logger.info(f"Solving {instance_path}")
print(f"{self.name}: solving {instance_path}")
model.optimize()
if self._nb_steps > 0:
self._return += self._reward()
self.save_results(model, recorder, instance_path, solving_stats_output_dir)
self._logger.info(f"Done solving {instance_path}")
model.freeProb()
self._logger.info(f"Done!")
except Exception as exception:
info = type(exception), exception, exception.__traceback__
self._logger.info(''.join(traceback.format_exception(*info, limit=5)))
raise exception
def branchinitsol(self):
self.state_buffer = {}
def branchexeclp(self, allowaddcons):
self._nb_steps += 1
previous_reward = self._reward()
if previous_reward is not None:
self._return += previous_reward
state = scip_utilities.extract_state(self.model, self.state_buffer)
# convert state to tensors
c, e, v = state
state = (
tf.convert_to_tensor(c['values'], dtype=tf.float32),
tf.convert_to_tensor(e['indices'], dtype=tf.int32),
tf.convert_to_tensor(e['values'], dtype=tf.float32),
tf.convert_to_tensor(v['values'], dtype=tf.float32),
tf.convert_to_tensor([c['values'].shape[0]], dtype=tf.int32),
tf.convert_to_tensor([v['values'].shape[0]], dtype=tf.int32),
)
var_logits = self.actor(state, tf.convert_to_tensor(False)).numpy().squeeze(0)
candidate_vars, *_ = self.model.getLPBranchCands()
candidate_mask = [var.getCol().getLPPos() for var in candidate_vars]
var_logits = var_logits[candidate_mask]
policy = softmax(var_logits)
action = np.random.choice(len(policy), 1, p=policy)[0]
best_var = candidate_vars[action]
self.model.branchVar(best_var)
result = pyscipopt.SCIP_RESULT.BRANCHED
return {"result": result}
def save_results(self, model, recorder, instance_path, solving_stats_output_dir):
# Save benchmark
if instance_path not in self._benchmark:
self._benchmark[instance_path] = {'return': [], 'nb_nodes': [], 'nb_lp_iterations': [], 'solving_time': []}
self._benchmark[instance_path]['return'].append(self._return)
self._benchmark[instance_path]['nb_nodes'].append(model.getNNodes())
self._benchmark[instance_path]['nb_lp_iterations'].append(model.getNLPIterations())
self._benchmark[instance_path]['solving_time'].append(model.getSolvingTime())
with (solving_stats_output_dir/"benchmark.pkl").open("wb") as file:
pickle.dump(self._benchmark, file)
# Save solving stats samples
if solving_stats_output_dir is not None and recorder.stats and self._sample_count < self.nb_solving_stats_samples:
nb_subsamples = np.ceil(0.05 * len(recorder.stats)).astype(int)
subsample_ends = np.random.choice(np.arange(1, len(recorder.stats)+1), nb_subsamples, replace=False).tolist()
for subsample_end in subsample_ends:
subsample_stats = scip_utilities.pack_solving_stats(recorder.stats[:subsample_end])
return_left = self._return - recorder.return_[subsample_end-1]
nb_nodes_left = model.getNNodes() - recorder.nb_nodes[subsample_end-1]
nb_lp_iterations_left = model.getNLPIterations() - recorder.nb_lp_iterations[subsample_end-1]
solving_time_left = model.getSolvingTime() - recorder.solving_time[subsample_end-1]
if self._sample_count < self.nb_solving_stats_samples:
self._sample_count += 1
sample_path = solving_stats_output_dir/f"sample_{self._sample_count-1}.pkl"
if self._sample_count % 10 == 1:
self._logger.info(f"Saving {sample_path}")
with gzip.open(str(sample_path), 'wb') as file:
pickle.dump({'solving_stats': subsample_stats,
'return_left': return_left,
'nb_nodes_left': nb_nodes_left,
'nb_lp_iterations_left': nb_lp_iterations_left,
'solving_time_left': solving_time_left,
'instance_path': instance_path}, file)
def branchexitsol(self):
self._reward.snapshot_reward()
def load_actor(self):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['CUDA_VISIBLE_DEVICES'] = ''
tfconfig = tf.ConfigProto()
tfconfig.intra_op_parallelism_threads = 1
tfconfig.inter_op_parallelism_threads = 1
tfconfig.use_per_session_threads = False
tf.enable_eager_execution(tfconfig)
tf.set_random_seed(seed=self.seed)
self._actor_weights = GCNPolicy()
self._actor_weights.restore_state(self.parameters_path)
def configure_logger(self):
self._logger = logging.getLogger("sampler")
self._logger.setLevel(logging.DEBUG)
os.makedirs("logs/", exist_ok=True)
file_handler = logging.FileHandler(f"logs/sampler-{self.id}.log", 'w', 'utf-8')
file_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(fmt='[%(asctime)s %(levelname)-8s] %(message)s',
datefmt='%H:%M:%S')
file_handler.setFormatter(formatter)
self._logger.addHandler(file_handler)
class SolvingStatsRecorder(pyscipopt.Eventhdlr):
"""
A SCIP event handler that records solving stats
"""
def __init__(self, sampler):
self.sampler = sampler
self.stats = []
self.return_ = []
self.nb_nodes = []
self.nb_lp_iterations = []
self.solving_time = []
def eventinit(self):
self.model.catchEvent(pyscipopt.SCIP_EVENTTYPE.NODEFEASIBLE, self)
self.model.catchEvent(pyscipopt.SCIP_EVENTTYPE.NODEINFEASIBLE, self)
self.model.catchEvent(pyscipopt.SCIP_EVENTTYPE.NODEBRANCHED, self)
def eventexit(self):
self.model.dropEvent(pyscipopt.SCIP_EVENTTYPE.NODEFEASIBLE, self)
self.model.dropEvent(pyscipopt.SCIP_EVENTTYPE.NODEINFEASIBLE, self)
self.model.dropEvent(pyscipopt.SCIP_EVENTTYPE.NODEBRANCHED, self)
def eventexec(self, event):
if len(self.stats) < self.model.getNNodes():
self.stats.append(self.model.getSolvingStats())
self.return_.append(float(self.sampler._return))
self.nb_nodes.append(self.model.getNNodes())
self.nb_lp_iterations.append(self.model.getNLPIterations())
self.solving_time.append(self.model.getSolvingTime())
class Message(enum.Enum):
NEW_INSTANCE = enum.auto()
INSTANCE_FINISHED = enum.auto()
STOP = enum.auto()
class NbNodesRewards:
def __init__(self, model):
self.model = model
self.previous_nb_nodes = None
self.reward = None
def __call__(self):
if self.reward is None:
self.snapshot_reward()
reward = self.reward
self.reward = None
return reward
def snapshot_reward(self):
nb_nodes = self.model.getNNodes()
if self.previous_nb_nodes is not None:
self.reward = float(self.previous_nb_nodes - nb_nodes)
self.previous_nb_nodes = nb_nodes
else:
self.reward = None
self.previous_nb_nodes = self.model.getNNodes()