-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAPR6n_decoding_patterns_source_stats.py
145 lines (127 loc) · 5.04 KB
/
APR6n_decoding_patterns_source_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
proj_name = 'MINDLAB2020_MEG-AuditoryPatternRecognition'
wdir = '/projects/' + proj_name + '/scratch/working_memory/'
scripts_dir = '/projects/' + proj_name + '/scripts/working_memory/'
import sys
sys.path.append(scripts_dir)
import mne
import numpy as np
from matplotlib import pyplot as plt
from stormdb.access import Query
from pickle import load
from scipy import stats
from mne.datasets import sample
from mne.stats import spatio_temporal_cluster_1samp_test
import os
import os.path as op
import pickle
from copy import deepcopy
from sys import argv
import src.group_stats as gs
from random import choices
os.environ['ETS_TOOLKIT'] = 'qt4'
os.environ['QT_API'] = 'pyqt5'
data_dir = wdir + 'averages/data/'
subs_dir = '/projects/' + proj_name + '/scratch/fs_subjects_dir/'
sample_path = sample.data_path()
sample_subjects_dir = sample_path + '/subjects'
src_sample = mne.read_source_spaces(subs_dir +
'/fsaverage/bem/fsaverage-vol-5-src.fif')
# src_sample = mne.read_source_spaces(subs_dir +
# '/fsaverage/bem/fsaverage_ico4_vol-src.fif')
# src_sample = mne.read_source_spaces(subs_dir +
# '/fsaverage/bem/fsaverage-vol-8-src.fif')
stats_dir = wdir + 'results/stats/'
#Get subjects:
qr = Query(proj_name)
subjects = qr.get_subjects()
subs = range(11,91)#91)#91) #, 27, 28, 29, 30, 31, 32, 33, 34, 35]
performance_exc = [55,58,60,73,76,82]
no_source_exc = [30,51,42]
noise_exc = [15]
no_data_exc = [32,33]
exclude = np.array(performance_exc + no_source_exc + noise_exc + no_data_exc)
subs = np.array([s for s in subs if s not in exclude])
subs.shape
avg = 1
add_flip = False
periods = {'all': [0, 4],
'encoding': [0, 2],
'S1a': [.15,.25],
'S1b': [.3,.5],
'S2a': [.65,.75],
'S2b': [.8,1.],
'S3a': [1.15,1.25],
'S3b': [1.3,1.5],
'L1': [.2,.5],
'L2': [.7,1],
'L3': [1.2,1.5],
'I1': [2,4],
'I2': [2.5,3.5]}
period = 'I1'
mode = 'patterns'
suffix = 'sources_task_sensor_lf_0.05_hf_None_tstep_0.025_twin_0.05_localized'
fsuffix = 'sources_task_sensor_lf_0.05_hf_None_tstep_0.025_twin_0.05_flipped_localized'
suffix2 = '_peaks'
if len(argv) > 1:
period = argv[1]
if len(argv) > 2:
mode = argv[2]
if len(argv) > 3:
avg = int(argv[3])
times = periods[period]
print('grand average analyses for {} ({}-{} s)'.format(period, times[0], times[1]))
all_data = {}
for sidx,s in enumerate(subs):
try:
scode = subjects[s-1]
morph = mne.read_source_morph(subs_dir + scode + '/bem/' + scode + '_vol-morph.h5')
morph_mat = morph.vol_morph_mat
dfname = op.join(data_dir,scode, scode + '_' + mode + '_' + suffix + '.p')
print('\n\nloading file {}\n'.format(dfname))
dfile = open(dfname,'rb')
curdata = load(dfile)
if add_flip:
flipped_fname = op.join(data_dir,scode, scode + '_' + mode + '_' + fsuffix + '.p')
print('\nloading file {}\n'.format(flipped_fname))
flipped_file = open(flipped_fname,'rb')
fdata = load(flipped_file)
curdata['flipped1'] = fdata['flipped1'].copy()
del fdata
for cd in curdata:
cdata = morph_mat.dot(curdata[cd].crop(times[0],times[1]).data)#deepcopy(cmorphed.data) #morph_mat.dot(c.data)
if avg == 1:
cdata = cdata.mean(axis=1,keepdims=True)
print('appending subject {} condition {}'.format(scode,cd))
all_data.setdefault(cd,np.array([cdata]))
#all_data[cd][cd2].append([cdata])
if sidx > 0:
all_data[cd] = np.vstack((all_data[cd],np.array([cdata])))
except Exception as e:
print(e)
continue
adjacency = mne.spatial_src_adjacency(src_sample)
### Stats on main comparisons
#conds = [k for k in all_data]
conds = ['interaction','maintenance1','manipulation1']
#alphas = [.025,.025,.025,.025,.025,.025,.025]
stat_results = {}
for cidx, cnd in enumerate(conds):
cdata = all_data[cnd]
print(cdata.shape)
if cnd == 'interaction':
cdata = all_data['manipulation1'] - all_data['maintenance1']
#stat_results[cnd] = gs.do_stats(cdata, 'FDR', adjacency=adjacency, FDR_alpha=.025)
stat_results[cnd] = gs.do_stats(cdata, 'montecarlo', adjacency=adjacency,
FDR_alpha=.025, n_permutations=5000, cluster_alpha=.05)#, cluster_method='TFCE')
print('reporting stats for {}:\n'.format(cnd))
print('minimum pval = ', np.round(np.min(stat_results[cnd]['pvals']),2))
# print('minimum qval = ', np.round(np.min(stat_results[cnd]['qvals']),2))
print('minimum tstat = ', np.round(np.min(stat_results[cnd]['tvals']),2))
print('maximum tstat = ', np.round(np.max(stat_results[cnd]['tvals']),2),'\n')
print('saving stats results')
stats_fname = op.join(stats_dir,'{}_source_stats_{}{}.p'.format(mode,period,suffix2))
sfile = open(stats_fname,'wb')
pickle.dump(stat_results,sfile)
sfile.close()