-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsummarize_data.py
120 lines (98 loc) · 5.52 KB
/
summarize_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# -*- coding: utf-8 -*-
"""
@author: David R Hagen
@license: MIT
"""
from scipy.stats import norm
from general_setup import smooth_data,median_over_months,sum_over_patterns,filter_for_specific_day,plot_me
from load_data import good_XXth_data,bad_XXth_data,bad_nth_data
# Good medians
good_XXth_medians = median_over_months(good_XXth_data)
good_XXth_medians_smooth = smooth_data(good_XXth_medians, 5)
# The day of interest
only_11th = filter_for_specific_day(good_XXth_data, '11th')
only_11th_medians_smooth = good_XXth_medians_smooth[['year','11th']]
# Bad sums
sum_bad_XXth = sum_over_patterns(bad_XXth_data, new_name='badth')
# Sum of good and bad
sum_bad_XXth_and_11th = sum_over_patterns(only_11th.merge(bad_XXth_data, on='year'), new_name='allth')
sum_bad_XXth_and_11th_medians = median_over_months(sum_bad_XXth_and_11th)
sum_bad_XXth_and_11th_medians_smooth = smooth_data(sum_bad_XXth_and_11th_medians, 5)
# Difference between good and sum of bad and good (not necessarily equal to sum of bad alone)
sum_XXth_minus_bad_medians = sum_bad_XXth_and_11th_medians.copy()
sum_XXth_minus_bad_medians.columns = ['year', 'diffth']
sum_XXth_minus_bad_medians['diffth'] = sum_bad_XXth_and_11th_medians['allth'] - good_XXth_medians['11th']
sum_XXth_minus_bad_medians_smooth = smooth_data(sum_XXth_minus_bad_medians)
# Sum of good and nth
sum_bad_11th_and_nth = sum_over_patterns(only_11th.merge(bad_nth_data, on='year'), new_name='allth')
sum_bad_11th_and_nth_medians = median_over_months(sum_bad_11th_and_nth)
sum_bad_11th_and_nth_medians_smooth = smooth_data(sum_bad_11th_and_nth_medians, 5)
# Difference between good and sum of bad and good (not necessarily equal to sum of bad alone)
sum_minus_bad_nth_medians = sum_bad_11th_and_nth_medians.copy()
sum_minus_bad_nth_medians.columns = ['year', 'diffth']
sum_minus_bad_nth_medians['diffth'] = sum_bad_11th_and_nth_medians['allth'] - good_XXth_medians['11th']
sum_minus_bad_nth_medians_smooth = smooth_data(sum_minus_bad_nth_medians)
# Sum of good and bad and nth
sum_bad_XXth_and_11th_and_nth = sum_over_patterns(sum_bad_XXth_and_11th.merge(bad_nth_data, on='year'), new_name='allth')
sum_bad_XXth_and_11th_and_nth_medians = median_over_months(sum_bad_XXth_and_11th_and_nth)
sum_bad_XXth_and_11th_and_nth_medians_smooth = smooth_data(sum_bad_XXth_and_11th_and_nth_medians, 5)
# Narrow down to a single error
#only_llth = bad_XXth_data[['year'] + [col for col in bad_XXth_data.columns[1:] if col.split(' ')[1] == 'llth']]
#only_llth_medians = median_over_months(only_llth)
#only_llth_medians_smooth = smooth_data(only_llth_medians, 5)
#sum_11th_llth = sum_over_patterns(only_11th.merge(only_llth, on='year'), new_name='11llth')
#sum_11th_llth_medians = median_over_months(sum_11th_llth)
#sum_11th_llth_medians_smooth = smooth_data(sum_11th_llth_medians, 5)
# Histogram over 2000-2008
medians_over_decade = good_XXth_medians[2000-1800:2008-1800+1].median()
del medians_over_decade['year']
mean_ordinal = medians_over_decade.mean()
std_ordinal = medians_over_decade.std()
pvalue_ordinals = [min(norm.cdf([element], loc=mean_ordinal, scale=std_ordinal)) for element in medians_over_decade]
ax = medians_over_decade.hist(bins=35, grid=False, color='blue', figsize=(7,4.5))
ax.set_xlim(xmin=0)
ax.set_xlabel('frequency')
ax.set_ylabel('count')
ax.text(5.5e-8, 1.2, '1st')
ax.text(3.4e-8, 1.2, '15th')
ax.text(1.1e-8, 1.2, '11th')
# Mean over 2000-2008
#ax = plot_me(good_XXth_medians_smooth, years=(2000,2008))
#ax.text(2004, 6.2e-8, '1st')
#ax.text(2005, 1.3e-8, '11th')
#ax.text(2001, 3.3e-8, '15th')
# Plot raw data
# This is a total mess
#plot_me(good_XXth_data)
# Plot good medians
ax = plot_me(good_XXth_medians_smooth)
ax.plot(good_XXth_medians_smooth['year'], good_XXth_medians_smooth['11th'], 'b-', linewidth=4)
ax.text(1935, 4e-7, '1st')
ax.text(1925, 4.5e-8, '11th')
ax.text(1920, 2.58e-7, '31st')
# Plot good and xxth together
ax = plot_me(good_XXth_medians_smooth, sum_bad_XXth_and_11th_medians_smooth)
ax.plot(good_XXth_medians_smooth['year'], good_XXth_medians_smooth['11th'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_bad_XXth_and_11th_medians_smooth['allth'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_XXth_minus_bad_medians_smooth['diffth'], 'b-', linewidth=4)
ax.text(1925, 4.5e-8, '11th')
ax.text(1927, 10e-8, 'sum')
ax.text(1895, 2.5e-8, 'xxth')
# Plot good and nth together
ax = plot_me(good_XXth_medians_smooth, sum_bad_11th_and_nth_medians_smooth)
ax.plot(good_XXth_medians_smooth['year'], good_XXth_medians_smooth['11th'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_bad_11th_and_nth_medians_smooth['allth'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_minus_bad_nth_medians_smooth['diffth'], 'b-', linewidth=4)
ax.text(1920, 10e-8, '11th')
ax.text(1938, 15e-8, 'sum')
ax.text(1889, 5e-8, 'nth')
# Plot good and bad and nth together
ax = plot_me(good_XXth_medians_smooth, sum_bad_XXth_and_11th_and_nth_medians_smooth)
ax.plot(good_XXth_medians_smooth['year'], good_XXth_medians_smooth['11th'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_bad_XXth_and_11th_and_nth_medians_smooth['allth'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_XXth_minus_bad_medians_smooth['diffth'], 'b-', linewidth=4)
ax.plot(good_XXth_medians_smooth['year'], sum_minus_bad_nth_medians_smooth['diffth'], 'b-', linewidth=4)
ax.text(1920, 10e-8, '11th')
ax.text(1940, 15e-8, 'total')
ax.text(1889, 5e-8, 'nth')
ax.text(1895, 2.5e-8, 'xxth')