-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.py
107 lines (91 loc) · 4.05 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from tensorflow.keras import layers
import tensorflow as tf
from tensorflow import keras
from loadptn import x_min, y_min, z_min, x_max, y_max, z_max, atom_pos, atom_type
physical_devices = tf.config.list_physical_devices('GPU')
try:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
pass
from sklearn.metrics import classification_report, confusion_matrix
print('desired shape')
print((z_max-z_min, y_max-y_min, x_max-x_min, 1 + len(atom_type) + len(atom_pos)))
# Create the discriminator
discriminator = keras.Sequential(
[
keras.Input(shape=(z_max-z_min, y_max-y_min, x_max-x_min, 1 + len(atom_type) + len(atom_pos))),
layers.Conv3D(64, (3, 3, 3), strides=(2, 2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv3D(128, (3, 3, 3), strides=(2, 2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
<<<<<<< HEAD
=======
layers.GlobalMaxPooling3D(),
>>>>>>> main
layers.Dense(1),
],
name="discriminator",
)
# Create the generator
latent_dim = 1 + len(atom_type) + len(atom_pos)
generator = keras.Sequential(
[
keras.Input(shape=(latent_dim,)),
layers.Dense((z_max-z_min)* (y_max-y_min)* (x_max-x_min)* latent_dim),
layers.LeakyReLU(alpha=0.2),
layers.Reshape((z_max-z_min, y_max-y_min, x_max-x_min, latent_dim)),
layers.Conv3DTranspose(latent_dim, (4, 4, 4), strides=(1, 1, 1), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv3DTranspose(latent_dim, (4, 4, 4), strides=(1, 1, 1), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv3D(latent_dim, (7, 7, 7), padding="same", activation="sigmoid"),
],
name="generator",
)
class GAN(keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super(GAN, self).__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
def compile(self, d_optimizer, g_optimizer, loss_fn):
super(GAN, self).compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
def train_step(self, real_images):
if isinstance(real_images, tuple):
real_images = real_images[0]
# Sample random points in the latent space
batch_size = tf.shape(real_images)[0]
random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
# Decode them to fake images
generated_images = self.generator(random_latent_vectors)
# Combine them with real images
combined_images = tf.concat([generated_images, real_images], axis=0)
# Assemble labels discriminating real from fake images
labels = tf.concat(
[tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0
)
# Add random noise to the labels - important trick!
# labels += 0.05 * tf.random.uniform(tf.shape(labels))
# Train the discriminator
with tf.GradientTape() as tape:
predictions_d = self.discriminator(combined_images)
d_loss = self.loss_fn(labels, predictions_d)
grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(
zip(grads, self.discriminator.trainable_weights)
)
# Sample random points in the latent space
random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
# Assemble labels that say "all real images"
misleading_labels = tf.zeros((batch_size, 1))
# Train the generator (note that we should *not* update the weights
# of the discriminator)!
with tf.GradientTape() as tape:
predictions = self.discriminator(self.generator(random_latent_vectors))
g_loss = self.loss_fn(misleading_labels, predictions)
grads = tape.gradient(g_loss, self.generator.trainable_weights)
self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))
return {"d_loss": d_loss, "g_loss": g_loss}