-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadapted_deeplab_model.py
418 lines (352 loc) · 18.1 KB
/
adapted_deeplab_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# This code is modified from
# https://github.com/tensorflow/models/blob/master/research/resnet/resnet_model.py
# and
# https://github.com/chenxi116/TF-deeplab/blob/master/deeplab_model.py
from tensorflow.python.training import moving_averages
import numpy as np
import tensorflow as tf
import sys
sys.path.append('libs')
import tensorflow_util as tfutils
def myConvertFun(tensor_):
tensor_selected = tensor_[:, :, :, 1:]
tensor_selected = np.squeeze(tensor_selected)
return tensor_selected
class DeepLab(object):
"""DeepLab model."""
def __init__(self, batch_size=1,
num_classes=47,
lrn_rate=0.0001,
lr_decay_step=70000,
lrn_rate_end=0.00001,
lrn_rate_decay_rate=0.7,
num_residual_units=[3, 4, 23, 3],
weight_decay_rate=0.0001,
relu_leakiness=0.0,
bn=False,
filters=[64, 256, 512, 1024, 2048],
optimizer='adam', # 'sgd' or 'mom' or 'adam'
images=None, #tf.placeholder(tf.float32, shape=(1,750,750,3)),
labels=None, #tf.placeholder(tf.int32),
upsample_mode='deconv', # 'bilinear' or 'deconv'
data_aug=False,
data_aug_scale_low=0.6,
data_aug_scale_up=1.1,
image_down_scaling=False,
ignore_class_bg=True,
mode='test'):
"""DeepLab constructor.
Args:
: Hyperparameters.
images: Batches of images. [batch_size, image_size, image_size, 3]
labels: Batches of labels. [batch_size, image_size, image_size]
"""
self.images = images
self.labels = labels
if self.images == None:
self.images = tf.placeholder(tf.float32, shape=(1,None,None,3))
if self.labels == None:
self.labels = tf.placeholder(tf.int32)
self.H = tf.shape(self.images)[1]
self.W = tf.shape(self.images)[2]
self.batch_size = batch_size
self.num_classes = num_classes
self.lrn_rate = lrn_rate
self.lr_decay_step = lr_decay_step
self.lrn_rate_end = lrn_rate_end
self.lrn_rate_decay_rate = lrn_rate_decay_rate
self.num_residual_units = num_residual_units
self.weight_decay_rate = weight_decay_rate
self.relu_leakiness = relu_leakiness
self.bn = bn
self.filters = filters
self.optimizer = optimizer
self.upsample_mode = upsample_mode
self.data_aug = data_aug
self.data_aug_scale_low = data_aug_scale_low
self.data_aug_scale_up = data_aug_scale_up
self.image_down_scaling = image_down_scaling
self.ignore_class_bg = ignore_class_bg
self.mode = mode
self._extra_train_ops = []
with tf.variable_scope("ResNet"):
self.build_graph()
def build_graph(self):
"""Build a whole graph for the model."""
self._build_model()
if self.mode == 'train':
self._build_train_op()
def _stride_arr(self, stride):
"""Map a stride scalar to the stride array for tf.nn.conv2d."""
return [1, stride, stride, 1]
def _build_model(self):
"""Build the core model within the graph."""
with tf.variable_scope('group_1'):
x = self.images
## down_scaling image: scale 0.5
if self.image_down_scaling:
ori_H = tf.cast(self.H, tf.float32)
ori_W = tf.cast(self.W, tf.float32)
scaled_H = tf.cast(tf.multiply(ori_H, 0.5), tf.int32)
scaled_W = tf.cast(tf.multiply(ori_W, 0.5), tf.int32)
x = tf.image.resize_bilinear(x, [scaled_H, scaled_W])
## data aug: scale input from 0.5-1.5
if self.data_aug:
data_aug_scale = tf.random_uniform([], self.data_aug_scale_low, self.data_aug_scale_up)
ori_H = tf.cast(self.H, tf.float32)
ori_W = tf.cast(self.W, tf.float32)
scaled_H = tf.cast(tf.multiply(ori_H, data_aug_scale), tf.int32)
scaled_W = tf.cast(tf.multiply(ori_W, data_aug_scale), tf.int32)
self.H = scaled_H
self.W = scaled_W
x = tf.image.resize_bilinear(x, [scaled_H, scaled_W])
x = self._conv('conv1', x, 7, 3, 64, self._stride_arr(2))
x = self._batch_norm('bn_conv1', x)
x = self._relu(x, self.relu_leakiness)
x = tf.nn.max_pool(x, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME')
x_group1 = x
res_func = self._bottleneck_residual
filters = self.filters
with tf.variable_scope('group_2_0'):
x = res_func(x, filters[0], filters[1], self._stride_arr(1))
for i in range(1, self.num_residual_units[0]):
with tf.variable_scope('group_2_%d' % i):
x = res_func(x, filters[1], filters[1], self._stride_arr(1))
with tf.variable_scope('group_3_0'):
x = res_func(x, filters[1], filters[2], self._stride_arr(2))
for i in range(1, self.num_residual_units[1]):
with tf.variable_scope('group_3_%d' % i):
x = res_func(x, filters[2], filters[2], self._stride_arr(1))
with tf.variable_scope('group_4_0'):
x = res_func(x, filters[2], filters[3], self._stride_arr(1), 2)
for i in range(1, self.num_residual_units[2]):
with tf.variable_scope('group_4_%d' % i):
x = res_func(x, filters[3], filters[3], self._stride_arr(1), 2)
with tf.variable_scope('group_5_0'):
x = res_func(x, filters[3], filters[4], self._stride_arr(1), 4)
for i in range(1, self.num_residual_units[3]):
with tf.variable_scope('group_5_%d' % i):
if i == self.num_residual_units[3] - 1:
x = res_func(x, filters[4], filters[4], self._stride_arr(1), 4, True)
else:
x = res_func(x, filters[4], filters[4], self._stride_arr(1), 4)
with tf.variable_scope('group_last'):
x = self._relu(x, self.relu_leakiness)
self.res5c = x
with tf.variable_scope('fc_final_sketch46'):
x0 = self._conv('conv0', x, 3, filters[4], self.num_classes, self._stride_arr(1), 6, True)
x1 = self._conv('conv1', x, 3, filters[4], self.num_classes, self._stride_arr(1), 12, True)
x2 = self._conv('conv2', x, 3, filters[4], self.num_classes, self._stride_arr(1), 18, True)
x3 = self._conv('conv3', x, 3, filters[4], self.num_classes, self._stride_arr(1), 24, True)
x = tf.add(x0, x1)
x = tf.add(x, x2)
x = tf.add(x, x3)
x_group1 = self._conv('shortcut1', x_group1, 2, 64, self.num_classes, self._stride_arr(2), bias=True)
x = tf.add(x, x_group1)
self.logits = x # shape = [1, H/8, W/8, nClasses]
if self.upsample_mode == 'bilinear':
logits_up = tf.image.resize_bilinear(self.logits, [self.H, self.W])
self.logits_up = logits_up # shape = [1, H, W, nClasses]
elif self.upsample_mode == 'deconv':
W_up = tfutils.weight_variable([16, 16, self.num_classes, self.num_classes], name="W_up")
b_up = tfutils.bias_variable([self.num_classes], name="b_up")
up_stride = 16 if self.image_down_scaling else 8
logits_up \
= tfutils.conv2d_transpose_strided(self.logits, W_up, b_up,
output_shape=[1, self.H, self.W, self.num_classes],
stride=up_stride)
self.logits_up = logits_up # shape = [1, H, W, nClasses]
else:
raise NameError("Unknown upsample mode: %s!" % self.upsample_mode)
# logits_up_selected = tf.py_func(myConvertFun, [self.logits_up], [tf.float32])
# self.logits_up = tf.convert_to_tensor(logits_up_selected, name='logits_up_selected')
# logits_flat = tf.reshape(self.logits_up, [-1, self.num_classes - 1])
logits_flat = tf.reshape(self.logits_up, [-1, self.num_classes])
pred = tf.nn.softmax(logits_flat)
self.pred = tf.reshape(pred, tf.shape(self.logits_up)) # shape = [1, H, W, nClasses]
pred_label = tf.argmax(self.pred, 3) # shape = [1, H, W]
pred_label = tf.expand_dims(pred_label, axis=3)
self.pred_label = pred_label # shape = [1, H, W, 1], contains [0, nClasses)
def _build_train_op(self):
"""Build training specific ops for the graph."""
logits_flatten = tf.reshape(self.logits_up, [-1, self.num_classes])
pred_flatten = tf.reshape(self.pred, [-1, self.num_classes])
if self.data_aug:
label_ex = tf.expand_dims(self.labels, axis=3) # shape = [1, H, W, 1]
label_scaled = tf.image.resize_nearest_neighbor(label_ex, [self.H, self.W]) # shape = [1, H, W, 1]
labels_gt = tf.squeeze(label_scaled, axis=3) # shape = [1, H, W]
else:
labels_gt = self.labels
if self.ignore_class_bg:
# ignore background labels: 255
gt_labels_flatten = tf.reshape(labels_gt, [-1, ])
indices = tf.squeeze(tf.where(tf.less_equal(gt_labels_flatten, self.num_classes - 1)), 1)
remain_logits = tf.gather(logits_flatten, indices)
remain_pred = tf.gather(pred_flatten, indices)
remain_labels = tf.gather(gt_labels_flatten, indices)
xent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=remain_logits, labels=remain_labels)
else:
xent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits_up, labels=labels_gt)
self.cls_loss = tf.reduce_mean(xent, name='xent') # xent.shape=[nIgnoredBgPixels]
self.cost = self.cls_loss + self._decay()
tf.summary.scalar('cost', self.cost)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.learning_rate = tf.train.polynomial_decay(self.lrn_rate,
self.global_step,
self.lr_decay_step,
end_learning_rate=self.lrn_rate_end,
power=0.9)
tf.summary.scalar('learning rate', self.learning_rate)
tvars = tf.trainable_variables()
if self.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
elif self.optimizer == 'mom':
optimizer = tf.train.MomentumOptimizer(self.learning_rate, 0.9)
elif self.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(self.learning_rate)
else:
raise NameError("Unknown optimizer type %s!" % self.optimizer)
grads_and_vars = optimizer.compute_gradients(self.cost, var_list=tvars)
var_lr_mult = {}
for var in tvars:
if var.op.name.find(r'fc_final_sketch46') > 0 and var.op.name.find(r'biases') > 0:
var_lr_mult[var] = 20.
elif var.op.name.find(r'fc_final_sketch46') > 0:
var_lr_mult[var] = 10.
else:
var_lr_mult[var] = 1.
grads_and_vars = [((g if var_lr_mult[v] == 1 else tf.multiply(var_lr_mult[v], g)), v)
for g, v in grads_and_vars]
## summary grads
# for grad, grad_var in grads_and_vars:
# if grad is not None:
# tf.summary.histogram(grad_var.op.name + "/gradient", grad)
apply_op = optimizer.apply_gradients(grads_and_vars,
global_step=self.global_step, name='train_step')
train_ops = [apply_op] + self._extra_train_ops
self.train_step = tf.group(*train_ops)
# TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py
def _batch_norm(self, name, x):
"""Batch normalization."""
with tf.variable_scope(name):
params_shape = [x.get_shape()[-1]]
beta = tf.get_variable(
'beta', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
gamma = tf.get_variable(
'gamma', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
factor = tf.get_variable(
'factor', 1, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
if self.bn:
mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
moving_mean = tf.get_variable(
'mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
moving_variance = tf.get_variable(
'variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_mean, mean, 0.9))
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_variance, variance, 0.9))
else:
mean = tf.get_variable(
'mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
variance = tf.get_variable(
'variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
# inv_factor = tf.reciprocal(factor)
inv_factor = tf.div(1., factor)
mean = tf.multiply(inv_factor, mean)
variance = tf.multiply(inv_factor, variance)
# tf.summary.histogram(mean.op.name, mean)
# tf.summary.histogram(variance.op.name, variance)
# elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper net.
y = tf.nn.batch_normalization(
x, mean, variance, beta, gamma, 0.001)
y.set_shape(x.get_shape())
return y
def _bottleneck_residual(self, x, in_filter, out_filter, stride, atrous=1, keep_feat=False):
"""Bottleneck residual unit with 3 sub layers."""
orig_x = x
with tf.variable_scope('block_1'):
x = self._conv('conv', x, 1, in_filter, out_filter / 4, stride, atrous)
x = self._batch_norm('bn', x)
x = self._relu(x, self.relu_leakiness)
with tf.variable_scope('block_2'):
x = self._conv('conv', x, 3, out_filter / 4, out_filter / 4, self._stride_arr(1), atrous)
x = self._batch_norm('bn', x)
x = self._relu(x, self.relu_leakiness)
if keep_feat:
self.feat_visual = x
with tf.variable_scope('block_3'):
x = self._conv('conv', x, 1, out_filter / 4, out_filter, self._stride_arr(1), atrous)
x = self._batch_norm('bn', x)
with tf.variable_scope('block_add'):
if in_filter != out_filter:
orig_x = self._conv('conv', orig_x, 1, in_filter, out_filter, stride, atrous)
orig_x = self._batch_norm('bn', orig_x)
x += orig_x
x = self._relu(x, self.relu_leakiness)
tf.logging.info('image after unit %s', x.get_shape())
return x
def _decay(self):
"""L2 weight decay loss."""
costs = []
for var in tf.trainable_variables():
if var.op.name.find(r'DW') > 0:
costs.append(tf.nn.l2_loss(var))
# tf.histogram_summary(var.op.name, var)
return tf.multiply(self.weight_decay_rate, tf.add_n(costs))
def _conv(self, name, x, filter_size, in_filters, out_filters, strides, atrous=1, bias=False):
"""Convolution."""
with tf.variable_scope(name):
n = filter_size * filter_size * out_filters
w = tf.get_variable(
'DW', [filter_size, filter_size, in_filters, out_filters],
tf.float32, initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0 / n)))
if atrous == 1:
conv = tf.nn.conv2d(x, w, strides, padding='SAME')
else:
assert (strides == self._stride_arr(1))
conv = tf.nn.atrous_conv2d(x, w, rate=atrous, padding='SAME')
if bias:
b = tf.get_variable('biases', [out_filters], initializer=tf.constant_initializer())
return conv + b
else:
return conv
def _relu(self, x, leakiness=0.0):
"""Relu, with optional leaky support."""
return tf.nn.relu(x, name='leaky_relu')
#return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _fully_connected(self, x, out_dim):
"""FullyConnected layer for final output."""
x = tf.reshape(x, [self.batch_size, -1])
w = tf.get_variable(
'DW', [self.filters[-1], out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
def _fully_convolutional(self, x, out_dim):
"""FullyConvolutional layer for final output."""
w = tf.get_variable(
'DW', [1, 1, self.filters[-1], out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer())
return tf.nn.conv2d(x, w, self._stride_arr(1), padding='SAME') + b
def _global_avg_pool(self, x):
assert x.get_shape().ndims == 4
return tf.expand_dims(tf.expand_dims(tf.reduce_mean(x, [1, 2]), 0), 0)