-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathexample_batched_usage.py
310 lines (266 loc) · 13.6 KB
/
example_batched_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from multiprocessing.sharedctypes import Value
import numpy as np
from typing import List
import torch
import tokenizers
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteriaList, StoppingCriteria
import json
tokenizers_version = tuple(int(n) for n in tokenizers.__version__.split('.'))
if tokenizers_version < (0, 12, 1):
print("warning: Your tokenizers version looks old and you will likely have formatting issues. We recommend installing tokenizers >= 0.12.1")
PAD = "<pad>"
# signals the start of a document
BOS = "<|endoftext|>"
# signals the end of a generated infill
EOM = "<|endofmask|>"
def make_sentinel(i):
# signals (1) a location to insert an infill and (2) the start of the infill generation
return f"<|mask:{i}|>"
def remove_extra_code(input):
min_stop_position = len(input)
stop_tokens = ["\nclass", "\ndef", "\n#", "\nif", "\nassert", "\nclass", "<|/ file"]
for stop_token in stop_tokens:
if stop_token in input:
min_stop_position = min(min_stop_position, input.index(stop_token))
return input[:min_stop_position]
# monkey-patch transformers to avoid nans in padded generation with float16
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
# mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min / 10))
mask = torch.full((tgt_len, tgt_len), torch.tensor(-1e4))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
transformers.models.xglm.modeling_xglm._make_causal_mask = _make_causal_mask
class StopWordsStoppingCriteria(StoppingCriteria):
def __init__(self, init_lengths: List[int], stop_words_encoded: List[List[int]]):
super().__init__()
self.init_lengths = init_lengths
if stop_words_encoded is None:
stop_words_encoded = []
else:
assert isinstance(stop_words_encoded[0], list)
assert isinstance(stop_words_encoded, list)
self.stop_words_encoded = stop_words_encoded
def _contains_stop_words(self, tokens: List[int]):
if not bool(self.stop_words_encoded):
return False
for start_ix in range(len(tokens)):
for swe in self.stop_words_encoded:
if tokens[start_ix:start_ix+len(swe)] == swe:
return True
return False
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for init_length, i_tokens in zip(self.init_lengths, input_ids):
if not self._contains_stop_words(i_tokens[init_length:].tolist()):
return False
return True
class InfillingModel:
def __init__(self, model_name="facebook/incoder-1B", cuda=True, device=None, tokenizer=None, half=True, model=None):
self.model_name = model_name
if cuda:
assert device is None or device.startswith("cuda")
if device is None:
device = "cuda"
else:
assert device is None or device == "cpu"
if device is None:
device = "cpu"
self.device = device
if model_name == 'facebook/incoder-6B':
if cuda:
kwargs = dict(
revision="float16",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
else:
kwargs = dict(
low_cpu_mem_usage=True,
)
else:
kwargs = {}
if model is None:
print("loading model")
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs)
if tokenizer is None:
print("loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer = tokenizer
self.tokenizer.padding_side = "left"
self.tokenizer.pad_token = PAD
assert self.tokenizer.pad_token_id == 1
print("loading complete")
if cuda and half:
self.half = True
model = model.half()
else:
self.half = False
model = model.to(device)
self.model = model
self.cuda = cuda
def batched_generate(self, inputs: List[str], max_to_generate: int=128, temperature: float=0.2, trim: bool=True, stop_words=None):
assert self.tokenizer.padding_side == 'left'
assert isinstance(inputs, list)
batch = self.tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
batch = batch.to(self.device)
max_input_length = batch.input_ids.size(1)
max_length = max_input_length + max_to_generate
stopping_criteria = StoppingCriteriaList()
if stop_words is not None:
stop_words_encoded = [self.tokenizer.encode(word, add_special_tokens=False) for word in stop_words]
stopping_criteria.append(StopWordsStoppingCriteria([max_input_length for l in inputs], stop_words_encoded))
if max_length > 2048:
print("warning: max_length {} is greater than the context window {}".format(max_length, 2048))
with torch.no_grad():
outputs = self.model.generate(input_ids=batch.input_ids, attention_mask=batch.attention_mask, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_length, stopping_criteria=stopping_criteria)
hypo_strs = []
for input, output in zip(inputs, outputs):
detok_hypo_str = self.tokenizer.decode(output.flatten(), clean_up_tokenization_spaces=False)
while detok_hypo_str.startswith(PAD):
detok_hypo_str = detok_hypo_str[len(PAD):]
if detok_hypo_str.startswith(BOS):
detok_hypo_str = detok_hypo_str[len(BOS):]
if trim:
detok_hypo_str = detok_hypo_str[len(input):]
detok_hypo_str = remove_extra_code(detok_hypo_str)
hypo_strs.append(detok_hypo_str)
return hypo_strs
def generate(self, input: str, max_to_generate: int=128, temperature: float=0.2, trim: bool=True):
"""
Do standard left-to-right completion of the prefix `input` by sampling from the model
"""
outputs = self.batched_generate([input], max_to_generate, temperature, trim)
assert len(outputs) == 1
return outputs[0]
def batched_infill(self, batched_parts: List[List[str]], max_to_generate: int=128, temperature: float=0.2, extra_sentinel: bool=True, max_retries: int=1):
assert isinstance(batched_parts, list)
assert isinstance(batched_parts[0], list)
batch_size = len(batched_parts)
num_parts = len(batched_parts[0])
assert all(len(l) == num_parts for l in batched_parts), "all elements in the batch must have the same number of parts"
# if max_retries > 1 and len(batched_parts) > 1:
# raise NotImplementedError("multiple retries with batch > 1")
# assert num_parts == 2
batched_retries_attempted = torch.zeros(batch_size).long()
retries_attempted = 0
batched_not_done = torch.ones(batch_size).bool()
done_batched_complete = [None for _ in range(batch_size)]
done_batched_infills = [None for _ in range(batch_size)]
while (batched_not_done.any()) and (retries_attempted < max_retries):
retries_attempted += 1
batched_infills = [[] for _ in range(batch_size)]
batched_complete = [[] for _ in range(batch_size)]
batched_prompts = []
not_done_indices = batched_not_done.nonzero().flatten()
batched_retries_attempted[not_done_indices] += 1
assert batched_retries_attempted.max().item() == retries_attempted
for parts in batched_parts:
## (1) build the prompt
if len(parts) == 1:
prompt = parts[0]
else:
prompt = ""
# encode parts separated by sentinel
for sentinel_ix, part in enumerate(parts):
prompt += part
if extra_sentinel or (sentinel_ix < len(parts) - 1):
prompt += make_sentinel(sentinel_ix)
batched_prompts.append(prompt)
## (2) generate infills
subbatch_not_done = batched_not_done[not_done_indices].clone()
assert subbatch_not_done.all()
subbatch_not_done[:] = False
for sentinel_ix in range(num_parts - 1):
batched_part = [parts[sentinel_ix] for parts in batched_parts]
batched_prompts = [prompt + make_sentinel(sentinel_ix) for prompt in batched_prompts]
for batch_index, parts in enumerate(batched_parts):
batched_complete[batch_index].append(parts[sentinel_ix])
# TODO: this is inefficient as it requires re-encoding prefixes repeatedly
subbatch_prompts = [batched_prompts[ix] for ix in not_done_indices]
subbatch_outputs = self.batched_generate(subbatch_prompts, max_to_generate, temperature, trim=False, stop_words=[EOM])
for subbatch_ix, (completion, prompt) in enumerate(zip(subbatch_outputs, subbatch_prompts)):
batch_ix = not_done_indices[subbatch_ix]
completion = completion[len(prompt):]
if EOM not in completion:
completion += EOM
subbatch_not_done[subbatch_ix] |= True
completion = completion[:completion.index(EOM) + len(EOM)]
infilled = completion[:-len(EOM)]
batched_infills[batch_ix].append(infilled)
batched_complete[batch_ix].append(infilled)
batched_prompts[batch_ix] += completion
for batch_ix, parts in enumerate(batched_parts):
batched_complete[batch_ix].append(parts[-1])
batched_not_done[not_done_indices] = subbatch_not_done
for batch_ix in not_done_indices:
if not batched_not_done[batch_ix] or retries_attempted >= max_retries:
done_batched_complete[batch_ix] = batched_complete[batch_ix]
done_batched_infills[batch_ix] = batched_infills[batch_ix]
done_batched_text = [''.join(complete) for complete in done_batched_complete]
return [{
'text': text, # str, the completed document (with infills inserted)
'parts': parts, # List[str], length N. Same as passed to the method
'infills': infills, # List[str], length N-1. The list of infills generated
'retries_attempted': int(this_retries_attempted.item()), # number of retries used (if max_retries > 1)
'completed': bool(not this_not_done),
} for text, parts, infills, this_retries_attempted, this_not_done in zip(
done_batched_text, batched_parts, done_batched_infills, batched_retries_attempted, batched_not_done
)]
def infill(self, parts: List[str], max_to_generate: int=128, temperature: float=0.2, extra_sentinel: bool=True, max_retries: int=1):
"""
Generate infills to complete a partial document, e.g.
[A C E] -> [A B C D E], where B and D are infills that have been generated.
parts: List[str]. list of parts of the document. One string will be
inserted in between each element, i.e. infilling N-1 locations for a list
of length N.
max_to_generate: int. maximum number of tokens to generate. Keep in mind
that the model context size is 2048.
temperature: float. temperature parameter for sampling.
extra_sentinel: bool. we recommend setting this to True, as it makes it
easier for the model to end generated infills. See the footnote in
section 2.2 of our paper for details.
max_retries: int. if > 1, use rejection sampling to keep sampling infills until
all infills sample a completion token.
returns a dictionary containing the following:
text: str, the completed document (with infills inserted)
parts: List[str], length N. Same as passed to the method
infills: List[str], length N-1. The list of infills generated
retries_attempted: number of retries used (if max_retries > 1)
"""
outputs = self.batched_infill([parts], max_to_generate, temperature, extra_sentinel, max_retries)
assert len(outputs) == 1
return outputs[0]
infilling_model = InfillingModel("facebook/incoder-1B", cuda=True, half=False)
all_examples = [
'''\
def count_words(filename):
""" <insert> """
counts = Counter()
with open(filename) as file:
for line in file:
words = line.split(' ')
counts.update(words)
return counts\
''',
'''\
def count_lines(filename):
""" <insert> """
counts = Counter()
with open(filename) as file:
return(len(list(file)))\
'''
]
all_parts = [example.split("<insert>") for example in all_examples]
all_results = infilling_model.batched_infill(all_parts, max_to_generate=128, temperature=0.2)
for result in all_results:
print("completed document:")
print(result["text"])
print()