-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
113 lines (85 loc) · 4.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# pip install streamlit langchain lanchain-openai beautifulsoup4 python-dotenv chromadb
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from dotenv import load_dotenv
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
load_dotenv()
def get_vectorstore_from_url(url):
# get the text in document form
loader = WebBaseLoader(url)
document = loader.load()
# split the document into chunks
text_splitter = RecursiveCharacterTextSplitter()
document_chunks = text_splitter.split_documents(document)
# create a vectorstore from the chunks
vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
return vector_store
def get_context_retriever_chain(vector_store):
llm = ChatOpenAI()
retriever = vector_store.as_retriever()
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
return retriever_chain
def get_conversational_rag_chain(retriever_chain):
llm = ChatOpenAI()
prompt = ChatPromptTemplate.from_messages([
("system", "Answer the user's questions based on the below context:\n\n{context}"),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
stuff_documents_chain = create_stuff_documents_chain(llm,prompt)
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
def get_response(user_input):
retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
response = conversation_rag_chain.invoke({
"chat_history": st.session_state.chat_history,
"input": user_query
})
return response['answer']
# app config
st.set_page_config(page_title="Ask About Dez", page_icon="🚀")
st.title("Chat with Dez AI Assistant 🤖")
# sidebar
with st.sidebar:
#st.header("Settings")
st.header("Ask 🤖 About Dez 🚀")
#Website URL
#website_url = st.text_input("Website URL")
# dez content: https://raw.githubusercontent.com/dnzengou/chat-with-my-website/main/docs/dez-content_2024_en.txt
website_url = "https://raw.githubusercontent.com/dnzengou/chat-with-url/main/docs/tokenomics-data_062024.txt"
if website_url is None or website_url == "":
st.info("Please enter a website URL")
else:
# session state
# "Hello, I am an AI chatbot. Ask about Désiré and Desired Solutions, his company!"
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content="Hello 👋🏾 I am an Dez chatbot. Ask about everything crypto token & economics a.k.a tokenomics!"),
]
if "vector_store" not in st.session_state:
st.session_state.vector_store = get_vectorstore_from_url(website_url)
# user input
user_query = st.chat_input("Type your message here...")
if user_query is not None and user_query != "":
response = get_response(user_query)
st.session_state.chat_history.append(HumanMessage(content=user_query))
st.session_state.chat_history.append(AIMessage(content=response))
# conversation
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.write(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.write(message.content)