-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathdata.py
234 lines (197 loc) · 9.88 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2011, Alex Krizhevsky ([email protected])
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as n
from numpy.random import randn, rand, random_integers
import os
from util import *
BATCH_META_FILE = "batches.meta"
class DataProvider:
BATCH_REGEX = re.compile('^data_batch_(\d+)(\.\d+)?$')
def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
if batch_range == None:
batch_range = DataProvider.get_batch_nums(data_dir)
if init_batchnum is None or init_batchnum not in batch_range:
init_batchnum = batch_range[0]
self.data_dir = data_dir
self.batch_range = batch_range
self.curr_epoch = init_epoch
self.curr_batchnum = init_batchnum
self.dp_params = dp_params
self.batch_meta = self.get_batch_meta(data_dir)
self.data_dic = None
self.test = test
self.batch_idx = batch_range.index(init_batchnum)
def get_next_batch(self):
if self.data_dic is None or len(self.batch_range) > 1:
self.data_dic = self.get_batch(self.curr_batchnum)
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
return epoch, batchnum, self.data_dic
def __add_subbatch(self, batch_num, sub_batchnum, batch_dic):
subbatch_path = "%s.%d" % (os.path.join(self.data_dir, self.get_data_file_name(batch_num)), sub_batchnum)
if os.path.exists(subbatch_path):
sub_dic = unpickle(subbatch_path)
self._join_batches(batch_dic, sub_dic)
else:
raise IndexError("Sub-batch %d.%d does not exist in %s" % (batch_num,sub_batchnum, self.data_dir))
def _join_batches(self, main_batch, sub_batch):
main_batch['data'] = n.r_[main_batch['data'], sub_batch['data']]
def get_batch(self, batch_num):
if os.path.exists(self.get_data_file_name(batch_num) + '.1'): # batch in sub-batches
dic = unpickle(self.get_data_file_name(batch_num) + '.1')
sb_idx = 2
while True:
try:
self.__add_subbatch(batch_num, sb_idx, dic)
sb_idx += 1
except IndexError:
break
else:
dic = unpickle(self.get_data_file_name(batch_num))
return dic
def get_data_dims(self):
return self.batch_meta['num_vis']
def advance_batch(self):
self.batch_idx = self.get_next_batch_idx()
self.curr_batchnum = self.batch_range[self.batch_idx]
if self.batch_idx == 0: # we wrapped
self.curr_epoch += 1
def get_next_batch_idx(self):
return (self.batch_idx + 1) % len(self.batch_range)
def get_next_batch_num(self):
return self.batch_range[self.get_next_batch_idx()]
# get filename of current batch
def get_data_file_name(self, batchnum=None):
if batchnum is None:
batchnum = self.curr_batchnum
return os.path.join(self.data_dir, 'data_batch_%d' % batchnum)
@classmethod
def get_instance(cls, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, type="default", dp_params={}, test=False):
# why the fuck can't i reference DataProvider in the original definition?
#cls.dp_classes['default'] = DataProvider
type = type or DataProvider.get_batch_meta(data_dir)['dp_type'] # allow data to decide data provider
if type.startswith("dummy-"):
name = "-".join(type.split('-')[:-1]) + "-n"
if name not in dp_types:
raise DataProviderException("No such data provider: %s" % type)
_class = dp_classes[name]
dims = int(type.split('-')[-1])
return _class(dims)
elif type in dp_types:
_class = dp_classes[type]
return _class(data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
raise DataProviderException("No such data provider: %s" % type)
@classmethod
def register_data_provider(cls, name, desc, _class):
if name in dp_types:
raise DataProviderException("Data provider %s already registered" % name)
dp_types[name] = desc
dp_classes[name] = _class
@staticmethod
def get_batch_meta(data_dir):
return unpickle(os.path.join(data_dir, BATCH_META_FILE))
@staticmethod
def get_batch_filenames(srcdir):
return sorted([f for f in os.listdir(srcdir) if DataProvider.BATCH_REGEX.match(f)], key=alphanum_key)
@staticmethod
def get_batch_nums(srcdir):
names = DataProvider.get_batch_filenames(srcdir)
return sorted(list(set(int(DataProvider.BATCH_REGEX.match(n).group(1)) for n in names)))
@staticmethod
def get_num_batches(srcdir):
return len(DataProvider.get_batch_nums(srcdir))
class DummyDataProvider(DataProvider):
def __init__(self, data_dim):
#self.data_dim = data_dim
self.batch_range = [1]
self.batch_meta = {'num_vis': data_dim, 'data_in_rows':True}
self.curr_epoch = 1
self.curr_batchnum = 1
self.batch_idx = 0
def get_next_batch(self):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
data = rand(512, self.get_data_dims()).astype(n.single)
return self.curr_epoch, self.curr_batchnum, {'data':data}
class LabeledDummyDataProvider(DummyDataProvider):
def __init__(self, data_dim, num_classes=10, num_cases=512):
#self.data_dim = data_dim
self.batch_range = [1]
self.batch_meta = {'num_vis': data_dim,
'label_names': [str(x) for x in range(num_classes)],
'data_in_rows':True}
self.num_cases = num_cases
self.num_classes = num_classes
self.curr_epoch = 1
self.curr_batchnum = 1
self.batch_idx=0
def get_num_classes(self):
return self.num_classes
def get_next_batch(self):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
data = rand(self.num_cases, self.get_data_dims()).astype(n.single) # <--changed to rand
labels = n.require(n.c_[random_integers(0,self.num_classes-1,self.num_cases)], requirements='C', dtype=n.single)
return self.curr_epoch, self.curr_batchnum, {'data':data, 'labels':labels}
class MemoryDataProvider(DataProvider):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params=None, test=False):
DataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_dic = []
for i in self.batch_range:
self.data_dic += [self.get_batch(i)]
def get_next_batch(self):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
return epoch, batchnum, self.data_dic[batchnum - self.batch_range[0]]
class LabeledDataProvider(DataProvider):
def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
DataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
def get_num_classes(self):
return len(self.batch_meta['label_names'])
class LabeledMemoryDataProvider(LabeledDataProvider):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_dic = []
for i in batch_range:
self.data_dic += [unpickle(self.get_data_file_name(i))]
self.data_dic[-1]["labels"] = n.c_[n.require(self.data_dic[-1]['labels'], dtype=n.single)]
def get_next_batch(self):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
bidx = batchnum - self.batch_range[0]
return epoch, batchnum, self.data_dic[bidx]
dp_types = {"default": "The default data provider; loads one batch into memory at a time",
"memory": "Loads the entire dataset into memory",
"labeled": "Returns data and labels (used by classifiers)",
"labeled-memory": "Combination labeled + memory",
"dummy-n": "Dummy data provider for n-dimensional data",
"dummy-labeled-n": "Labeled dummy data provider for n-dimensional data"}
dp_classes = {"default": DataProvider,
"memory": MemoryDataProvider,
"labeled": LabeledDataProvider,
"labeled-memory": LabeledMemoryDataProvider,
"dummy-n": DummyDataProvider,
"dummy-labeled-n": LabeledDummyDataProvider}
class DataProviderException(Exception):
pass