-
Notifications
You must be signed in to change notification settings - Fork 44
/
elm.py
618 lines (478 loc) · 19.8 KB
/
elm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# -*- coding: utf8
# Author: David C. Lambert [dcl -at- panix -dot- com]
# Copyright(c) 2013
# License: Simple BSD
"""
The :mod:`elm` module implements the
Extreme Learning Machine Classifiers and Regressors (ELMClassifier,
ELMRegressor, SimpleELMRegressor, SimpleELMClassifier).
An Extreme Learning Machine (ELM) is a single layer feedforward
network with a random hidden layer components and ordinary linear
least squares fitting of the hidden->output weights by default.
[1][2]
References
----------
.. [1] http://www.extreme-learning-machines.org
.. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
2006.
"""
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy.linalg import pinv2
from sklearn.utils import as_float_array
from sklearn.utils.extmath import safe_sparse_dot
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
from sklearn.preprocessing import LabelBinarizer
from random_layer import RandomLayer, MLPRandomLayer
__all__ = ["ELMRegressor",
"ELMClassifier",
"GenELMRegressor",
"GenELMClassifier"]
# BaseELM class, regressor and hidden_layer attributes
# and provides defaults for docstrings
class BaseELM(BaseEstimator):
"""
Base class for ELMs.
Warning: This class should not be used directly.
Use derived classes instead.
"""
__metaclass__ = ABCMeta
def __init__(self, hidden_layer, regressor):
self.regressor = regressor
self.hidden_layer = hidden_layer
@abstractmethod
def fit(self, X, y):
"""
Fit the model using X, y as training data.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like of shape [n_samples, n_outputs]
Target values (class labels in classification, real numbers in
regression)
Returns
-------
self : object
Returns an instance of self.
"""
@abstractmethod
def predict(self, X):
"""
Predict values using the model
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Returns
-------
C : numpy array of shape [n_samples, n_outputs]
Predicted values.
"""
class GenELMRegressor(BaseELM, RegressorMixin):
"""
ELMRegressor is a regressor based on the Extreme Learning Machine.
An Extreme Learning Machine (ELM) is a single layer feedforward
network with a random hidden layer components and ordinary linear
least squares fitting of the hidden->output weights by default.
[1][2]
Parameters
----------
`hidden_layer` : random_layer instance, optional
(default=MLPRandomLayer(random_state=0))
`regressor` : regressor instance, optional (default=None)
If provided, this object is used to perform the regression from hidden
unit activations to the outputs and subsequent predictions. If not
present, an ordinary linear least squares fit is performed
Attributes
----------
`coefs_` : numpy array
Fitted regression coefficients if no regressor supplied.
`fitted_` : bool
Flag set when fit has been called already.
`hidden_activations_` : numpy array of shape [n_samples, n_hidden]
Hidden layer activations for last input.
See Also
--------
RBFRandomLayer, MLPRandomLayer, ELMRegressor, ELMClassifier
References
----------
.. [1] http://www.extreme-learning-machines.org
.. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
2006.
"""
def __init__(self,
hidden_layer=MLPRandomLayer(random_state=0),
regressor=None):
super(GenELMRegressor, self).__init__(hidden_layer, regressor)
self.coefs_ = None
self.fitted_ = False
self.hidden_activations_ = None
def _fit_regression(self, y):
"""
fit regression using pseudo-inverse
or supplied regressor
"""
if (self.regressor is None):
self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y)
else:
self.regressor.fit(self.hidden_activations_, y)
self.fitted_ = True
def fit(self, X, y):
"""
Fit the model using X, y as training data.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like of shape [n_samples, n_outputs]
Target values (class labels in classification, real numbers in
regression)
Returns
-------
self : object
Returns an instance of self.
"""
# fit random hidden layer and compute the hidden layer activations
self.hidden_activations_ = self.hidden_layer.fit_transform(X)
# solve the regression from hidden activations to outputs
self._fit_regression(as_float_array(y, copy=True))
return self
def _get_predictions(self):
"""get predictions using internal least squares/supplied regressor"""
if (self.regressor is None):
preds = safe_sparse_dot(self.hidden_activations_, self.coefs_)
else:
preds = self.regressor.predict(self.hidden_activations_)
return preds
def predict(self, X):
"""
Predict values using the model
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Returns
-------
C : numpy array of shape [n_samples, n_outputs]
Predicted values.
"""
if (not self.fitted_):
raise ValueError("ELMRegressor not fitted")
# compute hidden layer activations
self.hidden_activations_ = self.hidden_layer.transform(X)
# compute output predictions for new hidden activations
predictions = self._get_predictions()
return predictions
class GenELMClassifier(BaseELM, ClassifierMixin):
"""
GenELMClassifier is a classifier based on the Extreme Learning Machine.
An Extreme Learning Machine (ELM) is a single layer feedforward
network with a random hidden layer components and ordinary linear
least squares fitting of the hidden->output weights by default.
[1][2]
Parameters
----------
`hidden_layer` : random_layer instance, optional
(default=MLPRandomLayer(random_state=0))
`binarizer` : LabelBinarizer, optional
(default=LabelBinarizer(-1, 1))
`regressor` : regressor instance, optional (default=None)
If provided, this object is used to perform the regression from hidden
unit activations to the outputs and subsequent predictions. If not
present, an ordinary linear least squares fit is performed
Attributes
----------
`classes_` : numpy array of shape [n_classes]
Array of class labels
`genelm_regressor_` : ELMRegressor instance
Performs actual fit of binarized values
See Also
--------
RBFRandomLayer, MLPRandomLayer, ELMRegressor, ELMClassifier
References
----------
.. [1] http://www.extreme-learning-machines.org
.. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
2006.
"""
def __init__(self,
hidden_layer=MLPRandomLayer(random_state=0),
binarizer=LabelBinarizer(-1, 1),
regressor=None):
super(GenELMClassifier, self).__init__(hidden_layer, regressor)
self.binarizer = binarizer
self.classes_ = None
self.genelm_regressor_ = GenELMRegressor(hidden_layer, regressor)
def decision_function(self, X):
"""
This function return the decision function values related to each
class on an array of test vectors X.
Parameters
----------
X : array-like of shape [n_samples, n_features]
Returns
-------
C : array of shape [n_samples, n_classes] or [n_samples,]
Decision function values related to each class, per sample.
In the two-class case, the shape is [n_samples,]
"""
return self.genelm_regressor_.predict(X)
def fit(self, X, y):
"""
Fit the model using X, y as training data.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like of shape [n_samples, n_outputs]
Target values (class labels in classification, real numbers in
regression)
Returns
-------
self : object
Returns an instance of self.
"""
self.classes_ = np.unique(y)
y_bin = self.binarizer.fit_transform(y)
self.genelm_regressor_.fit(X, y_bin)
return self
def predict(self, X):
"""Predict values using the model
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Returns
-------
C : numpy array of shape [n_samples, n_outputs]
Predicted values.
"""
raw_predictions = self.decision_function(X)
class_predictions = self.binarizer.inverse_transform(raw_predictions)
return class_predictions
# ELMRegressor with default RandomLayer
class ELMRegressor(BaseEstimator, RegressorMixin):
"""
ELMRegressor is a regressor based on the Extreme Learning Machine.
An Extreme Learning Machine (ELM) is a single layer feedforward
network with a random hidden layer components and ordinary linear
least squares fitting of the hidden->output weights by default.
[1][2]
ELMRegressor is a wrapper for an GenELMRegressor that uses a
RandomLayer and passes the __init__ parameters through
to the hidden layer generated by the fit() method.
Parameters
----------
`n_hidden` : int, optional (default=20)
Number of units to generate in the SimpleRandomLayer
`alpha` : float, optional (default=0.5)
Mixing coefficient for distance and dot product input activations:
activation = alpha*mlp_activation + (1-alpha)*rbf_width*rbf_activation
`rbf_width` : float, optional (default=1.0)
multiplier on rbf_activation
`activation_func` : {callable, string} optional (default='tanh')
Function used to transform input activation
It must be one of 'tanh', 'sine', 'tribas', 'inv_tribase', 'sigmoid',
'hardlim', 'softlim', 'gaussian', 'multiquadric', 'inv_multiquadric' or
a callable. If none is given, 'tanh' will be used. If a callable
is given, it will be used to compute the hidden unit activations.
`activation_args` : dictionary, optional (default=None)
Supplies keyword arguments for a callable activation_func
`user_components`: dictionary, optional (default=None)
dictionary containing values for components that woud otherwise be
randomly generated. Valid key/value pairs are as follows:
'radii' : array-like of shape [n_hidden]
'centers': array-like of shape [n_hidden, n_features]
'biases' : array-like of shape [n_hidden]
'weights': array-like of shape [n_hidden, n_features]
`regressor` : regressor instance, optional (default=None)
If provided, this object is used to perform the regression from hidden
unit activations to the outputs and subsequent predictions. If not
present, an ordinary linear least squares fit is performed
`random_state` : int, RandomState instance or None (default=None)
Control the pseudo random number generator used to generate the
hidden unit weights at fit time.
Attributes
----------
`genelm_regressor_` : GenELMRegressor object
Wrapped object that actually performs the fit.
See Also
--------
RandomLayer, RBFRandomLayer, MLPRandomLayer,
GenELMRegressor, GenELMClassifier, ELMClassifier
References
----------
.. [1] http://www.extreme-learning-machines.org
.. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
2006.
"""
def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0,
activation_func='tanh', activation_args=None,
user_components=None, regressor=None, random_state=None):
self.n_hidden = n_hidden
self.alpha = alpha
self.random_state = random_state
self.activation_func = activation_func
self.activation_args = activation_args
self.user_components = user_components
self.rbf_width = rbf_width
self.regressor = regressor
self._genelm_regressor = None
def _create_random_layer(self):
"""Pass init params to RandomLayer"""
return RandomLayer(n_hidden=self.n_hidden,
alpha=self.alpha, random_state=self.random_state,
activation_func=self.activation_func,
activation_args=self.activation_args,
user_components=self.user_components,
rbf_width=self.rbf_width)
def fit(self, X, y):
"""
Fit the model using X, y as training data.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like of shape [n_samples, n_outputs]
Target values (class labels in classification, real numbers in
regression)
Returns
-------
self : object
Returns an instance of self.
"""
rhl = self._create_random_layer()
self._genelm_regressor = GenELMRegressor(hidden_layer=rhl,
regressor=self.regressor)
self._genelm_regressor.fit(X, y)
return self
def predict(self, X):
"""
Predict values using the model
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Returns
-------
C : numpy array of shape [n_samples, n_outputs]
Predicted values.
"""
if (self._genelm_regressor is None):
raise ValueError("SimpleELMRegressor not fitted")
return self._genelm_regressor.predict(X)
class ELMClassifier(ELMRegressor):
"""
ELMClassifier is a classifier based on the Extreme Learning Machine.
An Extreme Learning Machine (ELM) is a single layer feedforward
network with a random hidden layer components and ordinary linear
least squares fitting of the hidden->output weights by default.
[1][2]
ELMClassifier is an ELMRegressor subclass that first binarizes the
data, then uses the superclass to compute the decision function that
is then unbinarized to yield the prediction.
The params for the RandomLayer used in the input transform are
exposed in the ELMClassifier constructor.
Parameters
----------
`n_hidden` : int, optional (default=20)
Number of units to generate in the SimpleRandomLayer
`activation_func` : {callable, string} optional (default='tanh')
Function used to transform input activation
It must be one of 'tanh', 'sine', 'tribas', 'inv_tribase', 'sigmoid',
'hardlim', 'softlim', 'gaussian', 'multiquadric', 'inv_multiquadric' or
a callable. If none is given, 'tanh' will be used. If a callable
is given, it will be used to compute the hidden unit activations.
`activation_args` : dictionary, optional (default=None)
Supplies keyword arguments for a callable activation_func
`random_state` : int, RandomState instance or None (default=None)
Control the pseudo random number generator used to generate the
hidden unit weights at fit time.
Attributes
----------
`classes_` : numpy array of shape [n_classes]
Array of class labels
See Also
--------
RandomLayer, RBFRandomLayer, MLPRandomLayer,
GenELMRegressor, GenELMClassifier, ELMClassifier
References
----------
.. [1] http://www.extreme-learning-machines.org
.. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
2006.
"""
def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0,
activation_func='tanh', activation_args=None,
user_components=None, regressor=None,
binarizer=LabelBinarizer(-1, 1),
random_state=None):
super(ELMClassifier, self).__init__(n_hidden=n_hidden,
alpha=alpha,
random_state=random_state,
activation_func=activation_func,
activation_args=activation_args,
user_components=user_components,
rbf_width=rbf_width,
regressor=regressor)
self.classes_ = None
self.binarizer = binarizer
def decision_function(self, X):
"""
This function return the decision function values related to each
class on an array of test vectors X.
Parameters
----------
X : array-like of shape [n_samples, n_features]
Returns
-------
C : array of shape [n_samples, n_classes] or [n_samples,]
Decision function values related to each class, per sample.
In the two-class case, the shape is [n_samples,]
"""
return super(ELMClassifier, self).predict(X)
def fit(self, X, y):
"""
Fit the model using X, y as training data.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like of shape [n_samples, n_outputs]
Target values (class labels in classification, real numbers in
regression)
Returns
-------
self : object
Returns an instance of self.
"""
self.classes_ = np.unique(y)
y_bin = self.binarizer.fit_transform(y)
super(ELMClassifier, self).fit(X, y_bin)
return self
def predict(self, X):
"""
Predict values using the model
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Returns
-------
C : numpy array of shape [n_samples, n_outputs]
Predicted values.
"""
raw_predictions = self.decision_function(X)
class_predictions = self.binarizer.inverse_transform(raw_predictions)
return class_predictions
def score(self, X, y):
"""Force use of accuracy score since we don't inherit
from ClassifierMixin"""
from sklearn.metrics import accuracy_score
return accuracy_score(y, self.predict(X))