-
Notifications
You must be signed in to change notification settings - Fork 16
/
mrcal-reproject-image
executable file
·616 lines (498 loc) · 25.4 KB
/
mrcal-reproject-image
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Remaps a captured image into another camera model
SYNOPSIS
### To "undistort" images to reproject to a pinhole projection
$ mrcal-reproject-image --to-pinhole
camera0.cameramodel
image*.jpg
Wrote image0-pinhole.jpg
Wrote image1-pinhole.jpg
...
### To reproject images from one lens model to another
$ mrcal-reproject-image
camera0.cameramodel camera1.cameramodel
image*.jpg
Wrote image0-reprojected.jpg
Wrote image1-reprojected.jpg
Wrote image2-reprojected.jpg
...
### To reproject two sets of images to a common pinhole projection
$ mrcal-reproject-image --to-pinhole
camera0.cameramodel camera1.cameramodel
'image*-cam0.jpg' 'image*-cam1.jpg'
Wrote image0-reprojected.jpg
Wrote image1-reprojected.jpg
Wrote image2-reprojected.jpg
...
### To "manually" stereo-rectify a pair of images
$ mrcal-stereo \
--az-fov-deg 80 \
--el-fov-deg 50 \
--outdir /tmp \
left.cameramodel \
right.cameramodel
Wrote '/tmp/rectified0.cameramodel'
Wrote '/tmp/rectified1.cameramodel'
$ mrcal-reproject-image \
--outdir /tmp \
/tmp/left.cameramodel \
/tmp/rectified0.cameramodel \
left.jpg
Wrote /tmp/left-reprojected.jpg
$ mrcal-reproject-image \
--outdir /tmp \
/tmp/right.cameramodel \
/tmp/rectified1.cameramodel \
right.jpg
Wrote /tmp/right-reprojected.jpg
$ mrcal-stereo \
--already-rectified \
--outdir /tmp \
/tmp/rectified[01].cameramodel \
/tmp/left-reprojected.jpg \
/tmp/right-reprojected.jpg
# This is the same as using mrcal-stereo to do all the work:
$ mrcal-stereo \
--az-fov-deg 80 \
--el-fov-deg 50 \
--outdir /tmp \
left.cameramodel \
right.cameramodel \
left.jpg \
right.jpg
This tool takes image(s) of a scene captured by one camera model, and produces
image(s) of the same scene, as it would appear if captured by a different model,
taking into account both the different lens parameters and geometries. This is
similar to mrcal-reproject-points, but acts on a full image, rather than a
discrete set of points.
There are several modes of operation, depending on how many camera models are
given, and whether --to-pinhole is given, and whether --plane-n,--plane-d are
given.
To "undistort" (remap to a pinhole projection) a set of images captured using a
particular camera model, invoke this tool like this:
mrcal-reproject-image
--to-pinhole
model0.cameramodel image*.jpg
Each of the given images will be reprojected, and written to disk as
"image....-reprojected.jpg". The pinhole model used for the reprojection will be
written to standard output.
To remap images of a scene captured by model0 to images of the same scene
captured by model1, do this:
mrcal-reproject-image
model0.cameramodel model1.cameramodel image*.jpg
Each of the given images will be reprojected, and written to disk as
"image....-reprojected.jpg". Nothing will be written to standard output. By
default, full relative extrinsics between the two models are used in the
reprojection. The unprojection distance (given with --distance) is infinity by
default, so only the relative rotation is used by default. To ignore the
extrinsics entirely, pass --intrinsics-only.
A common use case is to validate the relative intrinsics and extrinsics in two
models. If you have a pair of models and a pair of observed images, you can
compute the reprojection, and compare the reprojection-to-model1 to images that
were actually captured by model1. If the intrinsics and extrinsics were correct,
then the two images would line up exactly for relevant objects (far-away observations with the default --distance, ground plane with --plane-n, etc).
Computing this reprojection map is often very slow. But if the use case is
comparing two sets of captured images, the next, much faster invocation method
can be used.
To remap images of a scene captured by model0 and images of the same scene
captured by model1 to a common pinhole projection, do this:
mrcal-reproject-image
--to-pinhole
model0.cameramodel model1.cameramodel 'image*-cam0.jpg' 'image*-cam1.jpg'
A pinhole model is constructed that has the same extrinsics as model1, and both
sets of images are reprojected to this model. This is similar to the previous
mode, but since we're projecting to a pinhole model, this computes much faster.
The generated pinhole model is written to standard output.
Finally instead of reprojecting to match up images of objects at infinity, it is
possible to reproject to match up images of arbitrary planes. This can be done
by a command like this:
mrcal-reproject-image
--to-pinhole
--plane-n 1.1 2.2 3.3
--plane-d 4.4
model0.cameramodel model1.cameramodel 'image*-cam0.jpg' 'image*-cam1.jpg'
If the models were already pinhole-projected, this does the same thing as
mrcal-reproject-image
--plane-n 1.1 2.2 3.3
--plane-d 4.4
model0.cameramodel model1.cameramodel 'image*-cam0.jpg'
This maps observations of a given plane in camera0 coordinates to where this
plane would be observed in camera1 coordinates. This requires both models to be
passed-in. And ALL the intrinsics, extrinsics and the plane representation are
used. If all of these are correct, the observations of this plane would line up
exactly in the remapped-camera0 image and the camera1 image. The plane is
represented in camera0 coordinates by a normal vector given by --plane-n, and
the distance to the normal given by plane-d. The plane is all points p such that
inner(p,planen) = planed. planen does not need to be normalized. This mode does
not require --to-pinhole, but it makes the computations run much faster, as
before.
If --to-pinhole, then we generate a pinhole model, that is written to standard
output. By default, the focal length of this pinhole model is the same as that
of the input model. The "zoom" level of this pinhole model can be adjusted by
passing --scale-focal SCALE, or more precisely by passing --fit. --fit takes an
argument that is one of
- "corners": make sure all of the corners of the original image remain in-bounds
of the pinhole projection
- "centers-horizontal": make sure the extreme left-center and right-center
points in the original image remain in-bounds of the pinhole projection
- "centers-vertical": make sure the extreme top-center and bottom-center points
in the original image remain in-bounds of the pinhole projection
- A list of pixel coordinates x0,y0,x1,y1,x2,y2,.... The focal-length will be
chosen to fit all of the given points
By default, the resolution of the generated pinhole model is the same as the
resolution of the input model. This can be adjusted by passing --scale-image.
For instance, passing "--scale-image 0.5" will generate a pinhole model and
images that are half the size of the input images, in both the width and height.
The output image(s) are written into the same directory as the input image(s),
with annotations in the filename. This tool will refuse to overwrite any
existing files unless --force is given.
It is often desired to apply transformations to lots of images in bulk. To make
this go faster, this tool supports the -j JOBS option. This works just like in
Make: the work will be parallelized among JOBS simultaneous processes. Unlike
make, the JOBS value must be specified.
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--to-pinhole',
action="store_true",
help='''If given, we reproject the images to a pinhole model that's generated off the
MODEL-FROM and --fit, --scale-focal, --scale-image. The
generated pinhole model is written to the standard
output''')
parser.add_argument('--intrinsics-only',
action='store_true',
help='''If two camera models are given, then by default
the full relative transformation is used in the
reprojection. If we want to use the intrinsics ONLY,
pass this option''')
parser.add_argument('--distance',
type=float,
help='''The fundamental operation of this tool is to
unproject points from one camera, and to reproject them
into the other. The distance used for the unprojection
is set by this argument. If omitted, infinity is used;
this is equivalent to only using the rotation component
of the relative transformation between the cameras. This
option only makes sense without --intrinsics-only and
without --plane-n/--plane-d''')
parser.add_argument('--fit',
type=str,
required=False,
help='''If we generate a target pinhole model (if --to-pinhole is given) then we can
choose the focal length of the target model. This is a
"zoom" operation. By default just use whatever value
model-from has. Or we scale it by the value given in
--scale-focal. Or we use --fit to scale the focal length
intelligently. The --fit argument could be one of
("corners", "centers-horizontal", "centers-vertical"),
or the argument could be given as a list of points
x0,y0,x1,y1,x2,y2,.... The focal length scale would then
be chosen to zoom in as far as possible, while fitting
all of these points''')
parser.add_argument('--scale-focal',
type=float,
help='''If we generate a target pinhole model (if --to-pinhole is given) then we can
choose the focal length of the target model. This is a
"zoom" operation. By default just use whatever value
model-from has. Or we scale it by the value given in
--scale-focal. Or we use --fit to scale the focal length
intelligently.''')
parser.add_argument('--scale-image',
type=float,
help='''If we generate a target pinhole model (if --to-pinhole is given) then we can
choose the dimensions of the output image. By default we
use the dimensions of model-from. If --scale-image is
given, we use this value to scale the imager dimensions
of model-from. This parameter changes the RESOLUTION of
the output, unlike --scale-focal, which ZOOMS the
output''')
parser.add_argument('--plane-n',
type=float,
nargs=3,
help='''We're reprojecting a plane. The normal vector to this plane is given here, in
from-camera coordinates. The normal does not need to be
normalized; any scaling is compensated in planed. The
plane is all points p such that inner(p,planen) =
planed''')
parser.add_argument('--plane-d',
type=float,
help='''We're reprojecting a plane. The distance-along-the-normal to the plane, in
from-camera coordinates is given here. The plane is all
points p such that inner(p,planen) = planed''')
parser.add_argument('--outdir',
required=False,
type=lambda d: d if os.path.isdir(d) else \
parser.error("--outdir requires an existing directory as the arg, but got '{}'".format(d)),
help='''Directory to write the output images into. If omitted, we write the output
images to the same directory as the input images''')
parser.add_argument('--valid-intrinsics-region',
action='store_true',
help='''If given, we annotate the images with the FROM model's valid-intrinsics
region''')
parser.add_argument('--mask-valid-intrinsics-region',
action='store_true',
help='''If given, we draw everything outside the FROM model's valid-intrinsics region
as black. So the unreliable regions aren't even drawn''')
parser.add_argument('--force', '-f',
action='store_true',
default=False,
help='''By default existing files are not overwritten. Pass --force to overwrite them
without complaint''')
parser.add_argument('--jobs', '-j',
type=int,
required=False,
default=1,
help='''parallelize the processing JOBS-ways. This is like Make, except you're
required to explicitly specify a job count.''')
parser.add_argument('model-from',
type=str,
help='''Camera model for the FROM image(s). If "-' is given, we read standard
input''')
parser.add_argument('model-to-and-image-globs',
type=str,
nargs='+',
help='''Optionally, the camera model for the TO image. Followed, by the from/to image
globs. See the mrcal-reproject-image documentation for
the details.''')
args = parser.parse_args()
# use _ instead of - in attribute names so that I can access them easier
args.model_to_and_image_globs = getattr(args, 'model-to-and-image-globs')
args.model_from = getattr(args, 'model-from')
delattr(args, 'model-to-and-image-globs')
delattr(args, 'model-from')
return args
args = parse_args()
import mrcal
# I have to manually process this because the first model-to-and-image-globs
# element's identity is ambiguous in a way I can't communicate to argparse.
# It can be model-to or it can be the first image glob
def load_model_or_keep_filename(filename):
try:
m = mrcal.cameramodel(filename)
except:
# Couldn't load this file as a model. Are we pretty sure it WAS a model?
if re.search(r"\.(cameramodel|cahv|cahvor|cahvore)$",
filename,
flags = re.I):
# Filename tells us that this WAS a model. So I give up
print(f"Couldn't read camera model '{filename}'", file=sys.stderr)
sys.exit(1)
# Let's try to interpret this as an image
return filename
return m
mi = [load_model_or_keep_filename(f) for f in args.model_to_and_image_globs]
args.model_to = [ m for m in mi if isinstance(m,mrcal.cameramodel) ]
args.imageglobs = [ m for m in mi if not isinstance(m,mrcal.cameramodel) ]
delattr(args, 'model_to_and_image_globs')
if len(args.model_to) == 0: args.model_to = None
elif len(args.model_to) == 1: args.model_to = args.model_to[0]
else:
print(f"At most one model-to can be given. Instead got {len(args.model_to)} of them. Giving up.", file=sys.stderr)
sys.exit(1)
if args.model_from == '-' and \
args.model_to == '-':
print("At most one model can be given at '-' to read standard input. Giving up.", file=sys.stderr)
sys.exit(1)
if not args.to_pinhole:
if args.fit is not None or \
args.scale_focal is not None or \
args.scale_image is not None:
print("--fit, --scale-focal, --scale-image make sense ONLY with --to-pinhole",
file = sys.stderr)
sys.exit(1)
else:
if args.fit is not None and \
args.scale_focal is not None:
print("--fit and --scale-focal are mutually exclusive", file=sys.stderr)
sys.exit(1)
if args.model_to is None and \
args.intrinsics_only:
print("--intrinsics-only makes sense ONLY when both the FROM and TO camera models are given",
file=sys.stderr)
sys.exit(1)
if args.scale_image is not None and args.scale_image <= 1e-6:
print("--scale-image should be given a reasonable value > 0", file=sys.stderr)
sys.exit(1)
if (args.plane_n is None and args.plane_d is not None) or \
(args.plane_n is not None and args.plane_d is None):
print("--plane-n and --plane-d should both be given or neither should be", file=sys.stderr)
sys.exit(1)
if args.plane_n is not None and \
args.intrinsics_only:
print("We're looking at remapping a plane (--plane-d, --plane-n are given), so --intrinsics-only doesn't make sense",
file=sys.stderr)
sys.exit(1)
if args.distance is not None and \
(args.plane_n is not None or args.intrinsics_only):
print("--distance makes sense only without --plane-n/--plane-d and without --intrinsics-only", file=sys.stderr)
sys.exit(1)
import numpy as np
import numpysane as nps
if args.fit is not None:
if re.match(r"^[0-9\.e-]+(,[0-9\.e-]+)*$", args.fit):
xy = np.array([int(x) for x in args.fit.split(',')], dtype=float)
Nxy = len(xy)
if Nxy % 2 or Nxy < 4:
print(f"If passing pixel coordinates to --fit, I need at least 2 x,y pairs. Instead got {Nxy} values",
file=sys.stderr)
sys.exit(1)
args.fit = xy.reshape(Nxy//2, 2)
elif re.match("^(corners|centers-horizontal|centers-vertical)$", args.fit):
# this is valid. nothing to do
pass
else:
print("--fit must be a comma-separated list of numbers or one of ('corners','centers-horizontal','centers-vertical')",
file=sys.stderr)
sys.exit(1)
import glob
import multiprocessing
import signal
import time
try:
model_from = mrcal.cameramodel(args.model_from)
except Exception as e:
print(f"Couldn't read '{args.model_from}' as a cameramodel: {e}", file=sys.stderr)
sys.exit(1)
if not args.to_pinhole:
if not args.model_to:
print("Either --to-pinhole or the TO camera model MUST be given. Giving up", file=sys.stderr)
sys.exit(1)
if len(args.imageglobs) < 1:
print("No --to-pinhole with both TO and FROM models given: must have at least one set of image globs. Giving up", file=sys.stderr)
sys.exit(1)
model_to = args.model_to
else:
if not args.model_to:
if len(args.imageglobs) < 1:
print("--to-pinhole with only the FROM models given: must have at least one set of image globs. Giving up", file=sys.stderr)
sys.exit(1)
model_to = mrcal.pinhole_model_for_reprojection(model_from, args.fit,
scale_focal = args.scale_focal,
scale_image = args.scale_image)
print( "## generated on {} with {}".format(time.strftime("%Y-%m-%d %H:%M:%S"),
' '.join(mrcal.shellquote(s) for s in sys.argv)) )
print("# Generated pinhole model:")
model_to.write(sys.stdout)
else:
if len(args.imageglobs) != 2:
print("--to-pinhole with both the TO and FROM models given: must have EXACTLY two image globs. Giving up", file=sys.stderr)
sys.exit(1)
model_to = args.model_to
model_target = mrcal.pinhole_model_for_reprojection(model_to, args.fit,
scale_focal = args.scale_focal,
scale_image = args.scale_image)
print( "## generated on {} with {}".format(time.strftime("%Y-%m-%d %H:%M:%S"),
' '.join(mrcal.shellquote(s) for s in sys.argv)) )
print("# Generated pinhole model:")
model_target.write(sys.stdout)
if args.plane_n is not None:
if args.model_to is None:
print("Plane remapping requires BOTH camera models to be given", file=sys.stderr)
sys.exit(1)
args.plane_n = np.array(args.plane_n, dtype=float)
# I do the same thing in mrcal-stereo. Please consolidate
#
# weird business to handle weird signal handling in multiprocessing. I want
# things like the user hitting C-c to work properly. So I ignore SIGINT for the
# children. And I want the parent's blocking wait for results to respond to
# signals. Which means map_async() instead of map(), and wait(big number)
# instead of wait()
signal_handler_sigint = signal.signal(signal.SIGINT, signal.SIG_IGN)
signal.signal(signal.SIGINT, signal_handler_sigint)
# This stuff needs to be global for the multiprocessing pool to pick it up. It
# really is quite terrible. All I REALLY want is some os.fork() calls...
model_valid_intrinsics_region = None
mapxy = None
model_imagersize = None
def _transform_this(inout):
try:
image = mrcal.load_image(inout[0])
except:
print(f"Couldn't load '{inout[0]}'",
file=sys.stderr)
return
if image.shape[0] != model_imagersize[1] or \
image.shape[1] != model_imagersize[0]:
print(f"Couldn't process {inout[0]}: image dimensions don't match the input model dimensions. Image size: [{image.shape[1]} {image.shape[0]}]. model.imagersize(): {model_imagersize}",
file=sys.stderr)
return
if model_valid_intrinsics_region is not None:
mrcal.annotate_image__valid_intrinsics_region(image, model_valid_intrinsics_region)
image_transformed = mrcal.transform_image(image, mapxy)
mrcal.save_image(inout[1], image_transformed)
print(f"Wrote {inout[1]}", file=sys.stderr)
def process(model_from, model_to, image_globs, suffix,
intrinsics_only, distance, plane_n, plane_d):
def target_image_filename(filename_in, suffix):
base,extension = os.path.splitext(filename_in)
if len(extension) != 4:
print(f"imagefile must end in .xxx where 'xxx' is some image extension. Instead got '{filename_in}'",
file=sys.stderr)
sys.exit(1)
if args.outdir is not None:
base = args.outdir + '/' + os.path.split(base)[1]
filename_out = f"{base}-{suffix}{extension}"
if not args.force and os.path.exists(filename_out):
print(f"Target image '{filename_out}' already exists. Doing nothing, and giving up. Pass -f to overwrite",
file=sys.stderr)
sys.exit(1)
return filename_out
filenames_in = [f for g in image_globs for f in glob.glob(g)]
if len(filenames_in) == 0:
print(f"Globs '{image_globs}' matched no files!", file=sys.stderr)
sys.exit(1)
filenames_out = [target_image_filename(f, suffix) for f in filenames_in]
filenames_inout = zip(filenames_in, filenames_out)
global mapxy
global model_valid_intrinsics_region
global model_imagersize
if args.valid_intrinsics_region:
model_valid_intrinsics_region = model_from
model_imagersize = model_from.imagersize()
mapxy = mrcal.image_transformation_map(model_from, model_to,
intrinsics_only = intrinsics_only,
distance = distance,
plane_n = plane_n,
plane_d = plane_d,
mask_valid_intrinsics_region_from = \
args.mask_valid_intrinsics_region,)
if args.jobs > 1:
# Normal parallelized path
pool = multiprocessing.Pool(args.jobs)
try:
mapresult = pool.map_async(_transform_this, filenames_inout)
# like wait(), but will barf if something goes wrong. I don't actually care
# about the results
mapresult.get(1000000)
except:
pool.terminate()
pool.close()
pool.join()
else:
# Serial path. Useful for debugging
for f in filenames_inout:
_transform_this(f)
if args.to_pinhole and args.model_to:
# I'm reprojecting each of my sets of images to a pinhole model (a DIFFERENT
# model from TO and FROM)
process(model_from, model_target, (args.imageglobs[0],), "pinhole-remapped",
args.intrinsics_only, args.distance, args.plane_n, args.plane_d)
process(model_to, model_target, (args.imageglobs[1],), "pinhole",
args.intrinsics_only, args.distance, None, None)
else:
# Simple case. I have my two models, and I reproject all the images
process(model_from, model_to, args.imageglobs, "reprojected",
args.intrinsics_only, args.distance, args.plane_n, args.plane_d)