-
Notifications
You must be signed in to change notification settings - Fork 121
/
convolution.go
579 lines (509 loc) · 13.6 KB
/
convolution.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
package gift
import (
"image"
"image/draw"
"math"
)
type uweight struct {
u int
weight float32
}
type uvweight struct {
u int
v int
weight float32
}
func prepareConvolutionWeights(kernel []float32, normalize bool) (int, []uvweight) {
size := int(math.Sqrt(float64(len(kernel))))
if size%2 == 0 {
size--
}
if size < 1 {
return 0, []uvweight{}
}
center := size / 2
weights := []uvweight{}
for i := 0; i < size; i++ {
for j := 0; j < size; j++ {
k := j*size + i
w := float32(0)
if k < len(kernel) {
w = kernel[k]
}
if w != 0 {
weights = append(weights, uvweight{u: i - center, v: j - center, weight: w})
}
}
}
if !normalize {
return size, weights
}
var sum, sumpositive float32
for _, w := range weights {
sum += w.weight
if w.weight > 0 {
sumpositive += w.weight
}
}
var div float32
if sum != 0 {
div = sum
} else if sumpositive != 0 {
div = sumpositive
} else {
return size, weights
}
for i := 0; i < len(weights); i++ {
weights[i].weight /= div
}
return size, weights
}
type convolutionFilter struct {
kernel []float32
normalize bool
alpha bool
abs bool
delta float32
}
func (p *convolutionFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *convolutionFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
ksize, weights := prepareConvolutionWeights(p.kernel, p.normalize)
kcenter := ksize / 2
if ksize < 1 {
copyimage(dst, src, options)
return
}
pixGetter := newPixelGetter(src)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
// Init temporary rows.
starty := start
rows := make([][]pixel, ksize)
for i := 0; i < ksize; i++ {
rowy := starty + i - kcenter
if rowy < srcb.Min.Y {
rowy = srcb.Min.Y
} else if rowy > srcb.Max.Y-1 {
rowy = srcb.Max.Y - 1
}
row := make([]pixel, srcb.Dx())
pixGetter.getPixelRow(rowy, &row)
rows[i] = row
}
for y := start; y < stop; y++ {
// Calculate dst row.
for x := srcb.Min.X; x < srcb.Max.X; x++ {
var r, g, b, a float32
for _, w := range weights {
wx := x + w.u
if wx < srcb.Min.X {
wx = srcb.Min.X
} else if wx > srcb.Max.X-1 {
wx = srcb.Max.X - 1
}
rowsx := wx - srcb.Min.X
rowsy := kcenter + w.v
px := rows[rowsy][rowsx]
r += px.r * w.weight
g += px.g * w.weight
b += px.b * w.weight
if p.alpha {
a += px.a * w.weight
}
}
if p.abs {
r = absf32(r)
g = absf32(g)
b = absf32(b)
if p.alpha {
a = absf32(a)
}
}
if p.delta != 0 {
r += p.delta
g += p.delta
b += p.delta
if p.alpha {
a += p.delta
}
}
if !p.alpha {
a = rows[kcenter][x-srcb.Min.X].a
}
pixSetter.setPixel(dstb.Min.X+x-srcb.Min.X, dstb.Min.Y+y-srcb.Min.Y, pixel{r, g, b, a})
}
// Rotate temporary rows.
if y < stop-1 {
tmprow := rows[0]
for i := 0; i < ksize-1; i++ {
rows[i] = rows[i+1]
}
nextrowy := y + ksize/2 + 1
if nextrowy > srcb.Max.Y-1 {
nextrowy = srcb.Max.Y - 1
}
pixGetter.getPixelRow(nextrowy, &tmprow)
rows[ksize-1] = tmprow
}
}
})
}
// Convolution creates a filter that applies a square convolution kernel to an image.
// The length of the kernel slice must be the square of an odd kernel size (e.g. 9 for 3x3 kernel, 25 for 5x5 kernel).
// Excessive slice members will be ignored.
// If normalize parameter is true, the kernel will be normalized before applying the filter.
// If alpha parameter is true, the alpha component of color will be filtered too.
// If abs parameter is true, absolute values of color components will be taken after doing calculations.
// If delta parameter is not zero, this value will be added to the filtered pixels.
//
// Example:
//
// // Apply the emboss filter to an image.
// g := gift.New(
// gift.Convolution(
// []float32{
// -1, -1, 0,
// -1, 1, 1,
// 0, 1, 1,
// },
// false, false, false, 0,
// ),
// )
// dst := image.NewRGBA(g.Bounds(src.Bounds()))
// g.Draw(dst, src)
//
func Convolution(kernel []float32, normalize, alpha, abs bool, delta float32) Filter {
return &convolutionFilter{
kernel: kernel,
normalize: normalize,
alpha: alpha,
abs: abs,
delta: delta,
}
}
// prepareConvolutionWeights1d prepares pixel weights using a convolution kernel.
// Weights equal to 0 are excluded.
func prepareConvolutionWeights1d(kernel []float32) (int, []uweight) {
size := len(kernel)
if size%2 == 0 {
size--
}
if size < 1 {
return 0, []uweight{}
}
center := size / 2
weights := []uweight{}
for i := 0; i < size; i++ {
w := float32(0)
if i < len(kernel) {
w = kernel[i]
}
if w != 0 {
weights = append(weights, uweight{i - center, w})
}
}
return size, weights
}
// convolveLine convolves a single line of pixels according to the given weights.
func convolveLine(dstBuf []pixel, srcBuf []pixel, weights []uweight) {
max := len(srcBuf) - 1
if max < 0 {
return
}
for dstu := 0; dstu < len(srcBuf); dstu++ {
var r, g, b, a float32
for _, w := range weights {
k := dstu + w.u
if k < 0 {
k = 0
} else if k > max {
k = max
}
c := srcBuf[k]
wa := c.a * w.weight
r += c.r * wa
g += c.g * wa
b += c.b * wa
a += wa
}
if a != 0 {
r /= a
g /= a
b /= a
}
dstBuf[dstu] = pixel{r, g, b, a}
}
}
// convolve1dv performs a fast vertical 1d convolution.
func convolve1dv(dst draw.Image, src image.Image, kernel []float32, options *Options) {
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
if kernel == nil || len(kernel) < 1 {
copyimage(dst, src, options)
return
}
_, weights := prepareConvolutionWeights1d(kernel)
pixGetter := newPixelGetter(src)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.X, srcb.Max.X, func(start, stop int) {
srcBuf := make([]pixel, srcb.Dy())
dstBuf := make([]pixel, srcb.Dy())
for x := start; x < stop; x++ {
pixGetter.getPixelColumn(x, &srcBuf)
convolveLine(dstBuf, srcBuf, weights)
pixSetter.setPixelColumn(dstb.Min.X+x-srcb.Min.X, dstBuf)
}
})
}
// convolve1dh performs afast horizontal 1d convolution.
func convolve1dh(dst draw.Image, src image.Image, kernel []float32, options *Options) {
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
if kernel == nil || len(kernel) < 1 {
copyimage(dst, src, options)
return
}
_, weights := prepareConvolutionWeights1d(kernel)
pixGetter := newPixelGetter(src)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
srcBuf := make([]pixel, srcb.Dx())
dstBuf := make([]pixel, srcb.Dx())
for y := start; y < stop; y++ {
pixGetter.getPixelRow(y, &srcBuf)
convolveLine(dstBuf, srcBuf, weights)
pixSetter.setPixelRow(dstb.Min.Y+y-srcb.Min.Y, dstBuf)
}
})
}
func gaussianBlurKernel(x, sigma float32) float32 {
return float32(math.Exp(-float64(x*x)/float64(2*sigma*sigma)) / (float64(sigma) * math.Sqrt(2*math.Pi)))
}
type gausssianBlurFilter struct {
sigma float32
}
func (p *gausssianBlurFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *gausssianBlurFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
if p.sigma <= 0 {
copyimage(dst, src, options)
return
}
radius := int(math.Ceil(float64(p.sigma * 3)))
size := 2*radius + 1
center := radius
kernel := make([]float32, size)
kernel[center] = gaussianBlurKernel(0, p.sigma)
sum := kernel[center]
for i := 1; i <= radius; i++ {
f := gaussianBlurKernel(float32(i), p.sigma)
kernel[center-i] = f
kernel[center+i] = f
sum += 2 * f
}
for i := 0; i < len(kernel); i++ {
kernel[i] /= sum
}
tmp := createTempImage(srcb)
convolve1dh(tmp, src, kernel, options)
convolve1dv(dst, tmp, kernel, options)
}
// GaussianBlur creates a filter that applies a gaussian blur to an image.
// The sigma parameter must be positive and indicates how much the image will be blurred.
// Blur affected radius roughly equals 3 * sigma.
//
// Example:
//
// g := gift.New(
// gift.GaussianBlur(1.5),
// )
// dst := image.NewRGBA(g.Bounds(src.Bounds()))
// g.Draw(dst, src)
//
func GaussianBlur(sigma float32) Filter {
return &gausssianBlurFilter{
sigma: sigma,
}
}
type unsharpMaskFilter struct {
sigma float32
amount float32
threshold float32
}
func (p *unsharpMaskFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func unsharp(orig, blurred, amount, threshold float32) float32 {
dif := (orig - blurred) * amount
if absf32(dif) > absf32(threshold) {
return orig + dif
}
return orig
}
func (p *unsharpMaskFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
blurred := createTempImage(srcb)
blur := GaussianBlur(p.sigma)
blur.Draw(blurred, src, options)
pixGetterOrig := newPixelGetter(src)
pixGetterBlur := newPixelGetter(blurred)
pixelSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
for y := start; y < stop; y++ {
for x := srcb.Min.X; x < srcb.Max.X; x++ {
pxOrig := pixGetterOrig.getPixel(x, y)
pxBlur := pixGetterBlur.getPixel(x, y)
r := unsharp(pxOrig.r, pxBlur.r, p.amount, p.threshold)
g := unsharp(pxOrig.g, pxBlur.g, p.amount, p.threshold)
b := unsharp(pxOrig.b, pxBlur.b, p.amount, p.threshold)
a := unsharp(pxOrig.a, pxBlur.a, p.amount, p.threshold)
pixelSetter.setPixel(dstb.Min.X+x-srcb.Min.X, dstb.Min.Y+y-srcb.Min.Y, pixel{r, g, b, a})
}
}
})
}
// UnsharpMask creates a filter that sharpens an image.
// The sigma parameter is used in a gaussian function and affects the radius of effect.
// Sigma must be positive. Sharpen radius roughly equals 3 * sigma.
// The amount parameter controls how much darker and how much lighter the edge borders become. Typically between 0.5 and 1.5.
// The threshold parameter controls the minimum brightness change that will be sharpened. Typically between 0 and 0.05.
//
// Example:
//
// g := gift.New(
// gift.UnsharpMask(1, 1, 0),
// )
// dst := image.NewRGBA(g.Bounds(src.Bounds()))
// g.Draw(dst, src)
//
func UnsharpMask(sigma, amount, threshold float32) Filter {
return &unsharpMaskFilter{
sigma: sigma,
amount: amount,
threshold: threshold,
}
}
type meanFilter struct {
ksize int
disk bool
}
func (p *meanFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *meanFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
ksize := p.ksize
if ksize%2 == 0 {
ksize--
}
if ksize <= 1 {
copyimage(dst, src, options)
return
}
if p.disk {
diskKernel := genDisk(p.ksize)
f := Convolution(diskKernel, true, true, false, 0)
f.Draw(dst, src, options)
} else {
kernel := make([]float32, ksize*ksize)
for i := range kernel {
kernel[i] = 1
}
f := Convolution(kernel, true, true, false, 0)
f.Draw(dst, src, options)
}
}
// Mean creates a local mean image filter.
// Takes an average across a neighborhood for each pixel.
// The ksize parameter is the kernel size. It must be an odd positive integer (for example: 3, 5, 7).
// If the disk parameter is true, a disk-shaped neighborhood will be used instead of a square neighborhood.
func Mean(ksize int, disk bool) Filter {
return &meanFilter{
ksize: ksize,
disk: disk,
}
}
type hvConvolutionFilter struct {
hkernel, vkernel []float32
}
func (p *hvConvolutionFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *hvConvolutionFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
tmph := createTempImage(srcb)
Convolution(p.hkernel, false, false, true, 0).Draw(tmph, src, options)
pixGetterH := newPixelGetter(tmph)
tmpv := createTempImage(srcb)
Convolution(p.vkernel, false, false, true, 0).Draw(tmpv, src, options)
pixGetterV := newPixelGetter(tmpv)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
for y := start; y < stop; y++ {
for x := srcb.Min.X; x < srcb.Max.X; x++ {
pxh := pixGetterH.getPixel(x, y)
pxv := pixGetterV.getPixel(x, y)
r := sqrtf32(pxh.r*pxh.r + pxv.r*pxv.r)
g := sqrtf32(pxh.g*pxh.g + pxv.g*pxv.g)
b := sqrtf32(pxh.b*pxh.b + pxv.b*pxv.b)
pixSetter.setPixel(dstb.Min.X+x-srcb.Min.X, dstb.Min.Y+y-srcb.Min.Y, pixel{r, g, b, pxh.a})
}
}
})
}
// Sobel creates a filter that applies a sobel operator to an image.
func Sobel() Filter {
return &hvConvolutionFilter{
hkernel: []float32{-1, 0, 1, -2, 0, 2, -1, 0, 1},
vkernel: []float32{-1, -2, -1, 0, 0, 0, 1, 2, 1},
}
}