-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGame.py
60 lines (47 loc) · 1.7 KB
/
Game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import cv2
import pyautogui
from keras.models import load_model
model = load_model("my_model.h5")
game_map = {0: 'Run', 1: 'Jump'}
start = 0
cap = cv2.VideoCapture(0)
x = 10
y = 10
x2 = 200
y2 = 222
while True:
_, im = cap.read()
cv2.putText(im, "Press Esc to Close", (300, 40), cv2.FONT_HERSHEY_SIMPLEX,
1, (255, 253, 0), 2, cv2.LINE_AA, False)
cv2.putText(im, "Fist -> Run", (300, 80), cv2.FONT_HERSHEY_SIMPLEX,
1, (255, 253, 0), 2, cv2.LINE_AA, False)
cv2.putText(im, "Palm -> Jump", (300, 120), cv2.FONT_HERSHEY_SIMPLEX,
1, (255, 253, 0), 2, cv2.LINE_AA, False)
cv2.rectangle(im, (10, 10), (200, 222), (255, 0, 0), 2)
hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
mask2 = cv2.inRange(hsv, np.array([2, 0, 0]), np.array([20, 255, 255]))
kernel = np.ones((5, 5))
dilation = cv2.dilate(mask2, kernel, iterations=1)
erosion = cv2.erode(dilation, kernel, iterations=1)
filtered = cv2.GaussianBlur(erosion, (3, 3), 0)
ret, thresh = cv2.threshold(filtered, 127, 255, 0)
hand_img = thresh[y:y2, x:x2]
rerect_sized = cv2.resize(hand_img, (100, 89))
img = np.expand_dims(rerect_sized, axis=0)
img = np.reshape(img, (1, 89, 100, 1))
result = model.predict(img)
result1 = result[0][0]
if result1 >= 0.6:
label = "Jump"
pyautogui.press('space')
else:
label = "Run"
print(label)
cv2.putText(im, label, (10, 222), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 0, 230), 2, cv2.LINE_AA, False)
cv2.imshow('img', im)
k = cv2.waitKey(1) & 0xff
if k == 27:
break
cap.release()