-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
173 lines (128 loc) · 7.47 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
from sklearn import metrics
from sklearn.model_selection import StratifiedKFold
import util
from sklearn.svm import SVC
class Validation:
def __init__(self,
kernels=None,
all_genes=None,
training_genes=None,
training_labels=None,
n_folds=5):
self.kernels = kernels
self.all_genes = all_genes
self.training_genes = training_genes
self.training_labels = training_labels
self.n_folds = n_folds
def select_parameters(self, training_genes=None, training_labels=None):
"""Model selection"""
list_c = [10e-4, 10e-3, 10e-2, 10e-1, 1, 10e+1, 10e+2, 10e+3, 10e+4]
dict_gene_idx = {}
for idx, gene in enumerate(self.all_genes):
dict_gene_idx[gene]=idx
dict_paras_auc = {}
for kernel_idx in range(len(self.kernels)):
for c_idx in range(len(list_c)):
dict_paras_auc[(kernel_idx, c_idx)] = 0
skf = StratifiedKFold(n_splits=3, shuffle=False)
for train_index, test_index in skf.split(np.zeros(len(training_labels)), training_labels):
training_genes_left = [training_genes[idx] for idx in train_index]
training_indices = [dict_gene_idx[gene] for gene in training_genes_left]
training_labels_left = [training_labels[idx] for idx in train_index]
test_genes_left = [training_genes[idx] for idx in test_index]
test_indices = [dict_gene_idx[gene] for gene in test_genes_left]
test_labels_left = [training_labels[idx] for idx in test_index]
unknown_genes = []
unknown_genes.extend(test_genes_left)
for gene in self.all_genes:
if gene not in training_genes:
unknown_genes.append(gene)
unknown_indices = [dict_gene_idx[gene] for gene in unknown_genes]
for kernel_idx, kernel in enumerate(self.kernels):
training_kernel = util.extract_submatrix(training_indices,training_indices,kernel)
unknown_kernel = util.extract_submatrix(unknown_indices,training_indices,kernel)
for c_idx, c in enumerate(list_c):
clf = SVC(C=c, kernel='precomputed')
clf.fit(training_kernel, training_labels_left)
scores = clf.decision_function(unknown_kernel)
qscores = []
for s in scores[:len(test_indices)]:
qscore = float(sum([int(s >= value) for value in scores]))/len(scores)
qscores.append(qscore)
fpr, tpr, thresholds = metrics.roc_curve(test_labels_left, qscores, pos_label=1)
auc = metrics.auc(fpr, tpr)
dict_paras_auc[(kernel_idx, c_idx)] += auc
return max(dict_paras_auc, key=dict_paras_auc.get)
def validate_kfolds(self):
list_c = [10e-4, 10e-3, 10e-2, 10e-1, 1, 10e+1, 10e+2, 10e+3, 10e+4]
aucs = []
dict_gene_idx = {}
for idx, gene in enumerate(self.all_genes):
dict_gene_idx[gene]=idx
dict_paras_auc = {}
for kernel_idx in range(len(self.kernels)):
for c_idx in range(len(list_c)):
dict_paras_auc[(kernel_idx, c_idx)] = 0
skf = StratifiedKFold(n_splits=self.n_folds, shuffle=False)
for train_index, test_index in skf.split(np.zeros(len(self.training_labels)), self.training_labels):
training_genes_left = [self.training_genes[idx] for idx in train_index]
training_indices = [dict_gene_idx[gene] for gene in training_genes_left]
training_labels_left = [self.training_labels[idx] for idx in train_index]
test_genes_left = [self.training_genes[idx] for idx in test_index]
test_indices = [dict_gene_idx[gene] for gene in test_genes_left]
test_labels_left = [self.training_labels[idx] for idx in test_index]
unknown_genes = []
unknown_genes.extend(test_genes_left)
for gene in self.all_genes:
if gene not in self.training_genes:
unknown_genes.append(gene)
unknown_indices = [dict_gene_idx[gene] for gene in unknown_genes]
(kernel_idx, c_idx) = self.select_parameters(training_genes=training_genes_left, training_labels=training_labels_left)
training_kernel = util.extract_submatrix(training_indices, training_indices, self.kernels[kernel_idx])
unknown_kernel = util.extract_submatrix(unknown_indices, training_indices, self.kernels[kernel_idx])
clf = SVC(C=list_c[c_idx], kernel='precomputed')
clf.fit(training_kernel, training_labels_left)
scores = clf.decision_function(unknown_kernel)
qscores = []
for s in scores[:len(test_indices)]:
qscore = float(sum([int(s >= value) for value in scores]))/len(scores)
qscores.append(qscore)
fpr, tpr, thresholds = metrics.roc_curve(test_labels_left, qscores, pos_label=1)
auc = metrics.auc(fpr, tpr)
aucs.append(auc)
return aucs
def validate_leave_one_out(self):
list_c = [10e-4, 10e-3, 10e-2, 10e-1, 1, 10e+1, 10e+2, 10e+3, 10e+4]
dict_gene_idx = {}
for idx, gene in enumerate(self.all_genes):
dict_gene_idx[gene] = idx
dict_paras_auc = {}
for kernel_idx in range(len(self.kernels)):
for c_idx in range(len(list_c)):
dict_paras_auc[(kernel_idx, c_idx)] = 0
all_qscores = []
for train_g_idx, train_g in enumerate(self.training_genes):
print('processing gene ', train_g_idx)
training_genes_left = self.training_genes[:]
del training_genes_left[train_g_idx]
training_indices = [dict_gene_idx[gene] for gene in training_genes_left]
training_labels_left = self.training_labels[:]
del training_labels_left[train_g_idx]
unknown_genes = [train_g]
for gene in self.all_genes:
if gene not in self.training_genes:
unknown_genes.append(gene)
unknown_indices = [dict_gene_idx[gene] for gene in unknown_genes]
(kernel_idx, c_idx) = self.select_parameters(training_genes=training_genes_left,
training_labels=training_labels_left)
training_kernel = util.extract_submatrix(training_indices, training_indices, self.kernels[kernel_idx])
unknown_kernel = util.extract_submatrix(unknown_indices, training_indices, self.kernels[kernel_idx])
clf = SVC(C=list_c[c_idx], kernel='precomputed')
clf.fit(training_kernel, training_labels_left)
scores = clf.decision_function(unknown_kernel)
qscore = float(sum([int(scores[0] >= value) for value in scores])) / len(scores)
all_qscores.append(qscore)
fpr, tpr, thresholds = metrics.roc_curve(self.training_labels, all_qscores, pos_label=1)
auc = metrics.auc(fpr, tpr)
return auc