forked from pkrumins/the-seasoned-schemer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
16-ready-set-bang.ss
executable file
·472 lines (398 loc) · 10.9 KB
/
16-ready-set-bang.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
;
; Chapter 16 of The Seasoned Schemer:
; Ready, Set, Bang!
;
; Code examples assemled by Peteris Krumins ([email protected]).
; His blog is at http://www.catonmat.net -- good coders code, great reuse.
;
; Get yourself this wonderful book at Amazon: http://bit.ly/8cyjgw
;
; sub1 primitive
;
(define sub1
(lambda (n)
(- n 1)))
; add1 primitive
;
(define add1
(lambda (n)
(+ n 1)))
; atom? primitive
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; member? helper function
;
(define member?
(lambda (a l)
(letrec
((yes? (lambda (l)
(cond
((null? l) #f)
((eq? (car l) a) #t)
(else (yes? (cdr l)))))))
(yes? l))))
; Code examples start here
;
(define sweet-tooth
(lambda (food)
(cons food (cons 'cake '()))))
(define last 'angelfood)
(sweet-tooth 'fruit) ; '(fruit cake)
last ; 'angelfood
; The sweet-toothL function saves the last food
;
(define sweet-toothL
(lambda (food)
(set! last food)
(cons food (cons 'cake '()))))
(sweet-toothL 'chocolate) ; '(chocolate cake)
last ; 'chocolate
(sweet-toothL 'fruit) ; '(fruit cake)
last ; 'fruit
(define ingredients '())
; The sweet-toothR function builds a list of foods
;
(define sweet-toothR
(lambda (food)
(set! ingredients
(cons food ingredients))
(cons food (cons 'cake '()))))
(sweet-toothR 'chocolate) ; '(chocolate cake)
ingredients ; '(chocolate)
(sweet-toothR 'fruit) ; '(fruit cake)
ingredients ; '(fruit chocolate)
(sweet-toothR 'cheese) ; '(cheese cake)
ingredients ; '(cheese fruit chocolate)
(sweet-toothR 'carrot) ; '(carrot cake)
ingredients ; '(carrot cheese fruit chocolate)
; The deep function wraps pizza in n parenthesis
;
(define deep
(lambda (m)
(cond
((zero? m) 'pizza)
(else
(cons (deep (sub1 m)) '())))))
; Example of deep
;
(deep 3) ; '(((pizza)))
(deep 0) ; 'pizza
; The deepR1 function remembers the numbers deep has seen so far
;
(define Ns1 '())
(define deepR1
(lambda (n)
(set! Ns1 (cons n Ns1))
(deep n)))
; Examples of deepR1
;
(deepR1 3) ; '(((pizza)))
Ns1 ; (3)
(deepR1 0) ; 'pizza
Ns1 ; (0 3)
; The deepR function remembers the numbers and the results
;
(define Ns '())
(define Rs '())
(define deepR
(lambda (n)
(let ((result (deep n)))
(set! Ns (cons n Ns))
(set! Rs (cons result Rs))
result)))
; Examples of deepR
;
(deepR 3) ; '(((pizza)))
Ns ; '(3)
Rs ; '((((pizza))))
(deepR 5) ; '(((((pizza)))))
Ns ; '(5 3)
Rs ; '((((((pizza))))) (((pizza))))
(deepR 3) ; '(((pizza)))
Ns ; '(3 5 3)
Rs ; '((((pizza))) (((((pizza))))) (((pizza))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The nineteenth commandment ;
; ;
; Use (set! ...) to remember valuable things between two distinct uses of a ;
; function. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The find function finds pizza in Rs
;
(define find
(lambda (n Ns Rs)
(letrec
((A (lambda (ns rs)
(cond
((= (car ns) n) (car rs))
(else
(A (cdr ns) (cdr rs)))))))
(A Ns Rs))))
; Examples of find
;
(find 3 Ns Rs) ; '(((pizza)))
(find 5 Ns Rs) ; '(((((pizza)))))
;(find 7 Ns Rs) ; not applicable at this time
; The deepM function either uses find or computes pizza (temporary version)
;
(define deepM-tmp
(lambda (n)
(if (member? n Ns)
(find n Ns Rs)
(deepR n))))
Ns ; '(3 5 3)
Rs ; '((((pizza))) (((((pizza))))) (((pizza))))
(set! Ns (cdr Ns))
(set! Rs (cdr Rs))
Ns ; '(5 3)
Rs ; '((((((pizza))))) (((pizza))))
; The final deepM version
;
(define deepM
(lambda (n)
(if (member? n Ns)
(find n Ns Rs)
(let ((result (deep n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result))))
; Examples of deepM
(deepM 3) ; '(((pizza)))
(deepM 6) ; '((((((pizza))))))
; Redefining deep
;
(define deep
(lambda (m)
(cond
((zero? m) 'pizza)
(else (cons (deepM (sub1 m)) '())))))
(deepM 9) ; '(((((((((pizza)))))))))
Ns ; '(9 8 7 6 5 3)
; Redefining deepM to folow 16th commandment
;
(define deepM
(let ((Rs '())
(Ns '()))
(lambda (n)
(if (member? n Ns)
(find n Ns Rs)
(let ((result (deep n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)))))
; Tests of the new deepM
;
(deepM 10) ; '((((((((((pizza))))))))))
(deepM 16) ; '((((((((((((((((pizza))))))))))))))))
; Better answer for find on empty lists
;
(define find
(lambda (n Ns Rs)
(letrec
((A (lambda (ns rs)
(cond
((null? ns) #f)
((= (car ns) n) (car rs))
(else
(A (cdr ns) (cdr rs)))))))
(A Ns Rs))))
; And a better deepM
;
(define deepM
(let ((Rs '())
(Ns '()))
(lambda (n)
(let ((exists (find n Ns Rs)))
(if (atom? exists)
(let ((result (deep n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)
exists)))))
; Example of the new deepM
;
(deepM 10) ; '((((((((((pizza))))))))))
(deepM 16) ; '((((((((((((((((pizza))))))))))))))))
(deepM 0) ; 'pizza
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; Take a deep breath or a deep pizza, now. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Our good, old friend length
;
(define lengthz
(lambda (l)
(cond
((null? l) 0)
(else (add1 (lengthz (cdr l)))))))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; length via set!
;
(define lengthz
(lambda (l) 0))
(set! lengthz
(lambda (l)
(cond
((null? l) 0)
(else (add1 (lengthz (cdr l)))))))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; length via set! again
;
(define lengthz
(let ((h (lambda (l) 0)))
(set! h
(lambda (l)
(cond
((null? l) 0)
(else (add1 (h (cdr l)))))))
h))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The seventeenth commandment (final version) ;
; ;
; Use (set! x ...) for (let ((x ...)) ...) only if there is at least one ;
; (lambda ... between it and the (let ...), or if the new value for x is a ;
; function that refers to x ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Another way to write length
;
(define h1 ; h1 is actually an anonymous name
(lambda (l) 0))
(define lengthz
(let ()
(set! h1
(lambda (l)
(cond
((null? l) 0)
(else (add1 (h1 (cdr l)))))))
h1))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; Another way
;
(define h2 ; h2 is actually an anonymous name
(lambda (l)
(cond
((null? l) 0)
(else (add1 (h2 (cdr l)))))))
(define lengthz
(let () h2))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; length again
;
(define lengthz
(let ((h (lambda (l) 0)))
(set! h
(lambda (l)
(cond
((null? l) 0)
(else (add1 (h (cdr l)))))))
h))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; Let's eliminate parts that are specific to length
;
(define L
(lambda (lengthz)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (lengthz (cdr l))))))))
(define lengthz
(let ((h (lambda (l) 0)))
(set! h
(L (lambda (arg) (h arg))))
h))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; Y-bang - the applicative-order imperative y-combinator
; (discovered by Peter Landin)
;
(define Y-bang
(lambda (f)
(letrec
((h (f (lambda (arg) (h arg)))))
h)))
(define lengthz (Y-bang L))
; Test length
;
(lengthz '()) ; 0
(lengthz '(a b x)) ; 3
; depth* via Y-bang
;
(define D
(lambda (depth*)
(lambda (s)
(cond
((null? s) 1)
((atom? (car s)) (depth* (cdr s)))
(else
(max (add1 (depth* (car s))) (depth* (cdr s))))))))
(define depth* (Y-bang D))
; Test depth*
;
(depth* '()) ; 1
(depth* '(((pizza)) ())) ; 3
; The bizarre function
;
(define biz
(let ((x 0))
(lambda (f)
(set! x (add1 x))
(lambda (a)
(if (= a x)
0
(f a))))))
; Another way to write bizarre
;
(define x1 0) ; anonymous var
(define biz
(lambda (f)
(set! x1 (add1 x1))
(lambda (a)
(if (= a x1)
0
(f a)))))
; The Y-Combinator
;
(define Y
(lambda (le)
((lambda (f) (f f))
(lambda (f)
(le (lambda (x) ((f f) x)))))))
((Y biz) 5)
; ((Y-bang biz) 5) ; doesn't compute... why?
;
; Go get yourself this wonderful book and have fun with the Scheme language!
;
; Shortened URL to the book at Amazon.com: http://bit.ly/8cyjgw
;
; Sincerely,
; Peteris Krumins
; http://www.catonmat.net
;