-
Notifications
You must be signed in to change notification settings - Fork 5
/
norms.c
executable file
·705 lines (591 loc) · 20.3 KB
/
norms.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
#include <math.h>
#include "norms.h"
#include "instrumentation.h"
#include <immintrin.h>
#include <string.h>
/*
* Inspired from https://www.tfzx.net/article/918974.html
*/
// static void print_m256d(__m256d d) {
// double *a = (double *) &d;
// printf("{%lf %lf %lf %lf}\n", a[0], a[1], a[2], a[3]);
// }
// static void print_m128(__m128 d) {
// float *a = (float *) &d;
// printf("{%f %f %f %f}\n", a[0], a[1], a[2], a[3]);
// }
// static void print_m128i(__m128i d) {
// int *a = (int *) &d;
// printf("{%d %d %d %d}\n", a[0], a[1], a[2], a[3]);
// }
// static void print_m256(__m256 d) {
// float *a = (float *) &d;
// printf("{%f %f %f %f %f %f %f %f}\n", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7]);
// }
// static void print_m256i(__m256i d) {
// int *a = (int *) &d;
// printf("{%d %d %d %d %d %d %d %d}\n", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7]);
// }
// union test {
// double d;
// struct {
// int i;
// int j;
// } n;
// };
#define MAKE_MASK8(i0, i1, i2, i3, i4, i5, i6, i7) (i0 << 7 | i1 << 6 | i2 << 5 | i3 << 4 | i4 << 3 | i5 << 2 | i6 << 1 | i7)
__m256d exp256_pd_fast(__m256d x) {
// printf("-------------\n");
NUM_ADDS(4*3);
NUM_MULS(4);
// __m256 to_float = _mm256_castpd_ps(x); // zero latency
__m256d c1 = _mm256_set1_pd(1512775.3951951856938);
__m256d c2 = _mm256_set1_pd(1072632447);
__m256i selector = _mm256_set_epi32(3, 7, 2, 6, 1, 5, 0, 4);
__m256d temp = _mm256_fmadd_pd(c1, x, c2); // latency 4
// print_m256d(temp);
// printf("%lf\n", C1 * 1 + C2);
__m128i temp_int = _mm256_cvtpd_epi32(temp); // latency 7
// print_m128i(temp_int);
// printf("%d\n", (int) C1 * 1 + C2);
// __m128 temp_float_cast = _mm_cvtsi128_ps(temp_int);
// __m256i temp_int_broadcast = _mm256_broadcastsi128_si256(temp_int);
__m256i temp_int_extend = _mm256_castsi128_si256(temp_int); // zero latency
// print_m256i(temp_int_extend);
__m256 temp_cast = _mm256_castsi256_ps(temp_int_extend); // zero latency
// print_m256(temp_cast);
// __m256i selector = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
__m256 permute = _mm256_permutevar8x32_ps(temp_cast, selector); // latency 3
// print_m256(permute);
// __m256 float_result = _mm256_blend_ps(to_float, permute, MAKE_MASK8(1, 0, 1, 0, 1, 0, 1, 0)); // latency 1
// print_m256(float_result);
// union test test;
// test.n.j = 1512775.3951951856938*1 +1072632447;
// printf("%lf\n", test.d);
// __m256d result = _mm256_castps_pd(float_result); // latency 0
__m256d result = _mm256_castps_pd(permute); // latency 0
// print_m256d(result);
// printf("---------sdf-----\n");
return result;
}
// NOT USED -- NO INSTRUMENTATION
__m256d exp256_pd(__m256d in)
{
// print_m256d(in);
__m128 y = _mm256_cvtpd_ps(in);
// print_m128(y);
__m256 x = _mm256_castps128_ps256(y);
// print_m256(x);
__m256 t, f, p, r;
__m256i i, j;
const __m256 l2e = _mm256_set1_ps (1.442695041f); /* log2(e) */
const __m256 l2h = _mm256_set1_ps (-6.93145752e-1f); /* -log(2)_hi */
const __m256 l2l = _mm256_set1_ps (-1.42860677e-6f); /* -log(2)_lo */
/* coefficients for core approximation to exp() in [-log(2)/2, log(2)/2] */
const __m256 c0 = _mm256_set1_ps (0.041944388f);
const __m256 c1 = _mm256_set1_ps (0.168006673f);
const __m256 c2 = _mm256_set1_ps (0.499999940f);
const __m256 c3 = _mm256_set1_ps (0.999956906f);
const __m256 c4 = _mm256_set1_ps (0.999999642f);
/* exp(x) = 2^i * e^f; i = rint (log2(e) * x), f = x - log(2) * i */
t = _mm256_mul_ps (x, l2e); /* t = log2(e) * x */
r = _mm256_round_ps (t, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); /* r = rint (t) */
f = _mm256_fmadd_ps (r, l2h, x); /* x - log(2)_hi * r */
f = _mm256_fmadd_ps (r, l2l, f); /* f = x - log(2)_hi * r - log(2)_lo * r */
i = _mm256_cvtps_epi32(t); /* i = (int)rint(t) */
/* p ~= exp (f), -log(2)/2 <= f <= log(2)/2 */
p = c0; /* c0 */
p = _mm256_fmadd_ps (p, f, c1); /* c0*f+c1 */
p = _mm256_fmadd_ps (p, f, c2); /* (c0*f+c1)*f+c2 */
p = _mm256_fmadd_ps (p, f, c3); /* ((c0*f+c1)*f+c2)*f+c3 */
p = _mm256_fmadd_ps (p, f, c4); /* (((c0*f+c1)*f+c2)*f+c3)*f+c4 ~= exp(f) */
/* exp(x) = 2^i * p */
j = _mm256_slli_epi32 (i, 23); /* i << 23 */
r = _mm256_castsi256_ps (_mm256_add_epi32 (j, _mm256_castps_si256 (p))); /* r = p * 2^i */
// print_m256(r);
__m128 temp = _mm256_castps256_ps128(r);
__m256d out = _mm256_cvtps_pd(temp);
return out;
}
/**
* Exp function
* @param x
* @return
*/
// NOT USED
double fast_LUT_exp(double x) {
//ENTER_FUNC;
NUM_ADDS(1);
NUM_MULS(2);
uint64_t tmp = (1512775*x+1072632447);
int index = (int) (tmp>>12) & 0xFF;
//EXIT_FUNC;
return ((double )(tmp<<32 ))* ADJUSTMENT_LUT[index];
}
// NOT USED
double fast_exp(double x) {
//ENTER_FUNC;
NUM_MULS(2);
NUM_DIVS(1);
NUM_ADDS(2);
int x1 = (long long) (6051102*x+1056478197);
int x2 = (long long) (1056478197-6051102*x);
//EXIT_FUNC;
return ((double) x1)/((double) x2);
}
/**
* Gaussian similarity methods
* @param u
* @param v
* @param dim
* @return
*/
double gaussian_similarity(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_ADDS(3);
NUM_MULS(1+1);
double inner = exp(-0.5 * l2_norm_squared(u, v, dim));
//EXIT_FUNC;
return inner;
}
double gaussian_similarity_lowdim(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_ADDS(3);
NUM_MULS(1+1);
double inner = exp(-0.5 * l2_norm_squared_lowdim(u, v, dim));
//EXIT_FUNC;
return inner;
}
double fast_gaussian_similarity(double *u, double *v, int dim) {
ENTER_FUNC;
NUM_ADDS(3);
NUM_MULS(1+1);
double inner = EXP(-0.5 * l2_norm_squared(u, v, dim));
EXIT_FUNC;
return inner;
}
// __m256d fast_gaussian_similarity_2d_vec(double *u, double *v) {
// //ENTER_FUNC;
// __m256d u1u2 = _mm256_loadu_pd(u); // 2 points
// __m256d v1v2 = _mm256_loadu_pd(v);
// __m256d v3v4 = _mm256_loadu_pd(v + 4);
// __m256d v5v6 = _mm256_loadu_pd(v + 8);
// __m256d v7v8 = _mm256_loadu_pd(v + 12);
// __m256d u1u2_v1v2 = _mm256_sub_pd(u1u2, v1v2);
// __m256d u1u2_v3v4 = _mm256_sub_pd(u1u2, v3v4);
// __m256d u1u2_v5v6 = _mm256_sub_pd(u1u2, v5v6);
// __m256d u1u2_v7v8 = _mm256_sub_pd(u1u2, v7v8);
// __m256d u1u2_v1v2_2 = _mm256_mul_pd(u1u2_v1v2, u1u2_v1v2);
// __m256d u1u2_v3v4_2 = _mm256_mul_pd(u1u2_v3v4, u1u2_v3v4);
// __m256d u1u2_v5v6_2 = _mm256_mul_pd(u1u2_v5v6, u1u2_v5v6);
// __m256d u1u2_v7v8_2 = _mm256_mul_pd(u1u2_v7v8, u1u2_v7v8);
// __m256d norm_u1_v1 =
// }
/**
* Fast gaussian using simd exp
* @param u [i]
* @param v [j, j+1, j+2, j+3]
* @param dim [# of col]
* @return vector of 4 computation of fast gaussian using simd instr.
*/
__m256d fast_gaussian_similarity_vec(double *u, double *v, int dim) {
ENTER_FUNC;
double norms[4] __attribute__((aligned(32)));
double norm1[4] __attribute__((aligned(32))), norm2[4] __attribute__((aligned(32))), norm3[4] __attribute__((aligned(32))), norm4[4] __attribute__((aligned(32)));
__m256d v_u1, v_v1, v_v2, v_v3, v_v4, v_sub1, v_sub2, v_sub3, v_sub4;
__m256d v_norm1, v_norm2, v_norm3, v_norm4, zeros, half, result;
zeros = _mm256_setzero_pd();
half = _mm256_set1_pd(-0.5);
v_norm1 = zeros; v_norm2 = zeros; v_norm3 = zeros; v_norm4 = zeros;
memset(norms, 0, 4*sizeof(double));
int i;
for (i = 0; i < dim - 3; i+=4) {
v_u1 = _mm256_loadu_pd(u + i);
v_v1 = _mm256_loadu_pd(v + i);
v_v2 = _mm256_loadu_pd(v+dim + i);
v_v3 = _mm256_loadu_pd(v+2*dim + i);
v_v4 = _mm256_loadu_pd(v+3*dim + i);
NUM_ADDS(4*4);
v_sub1 = _mm256_sub_pd(v_u1, v_v1);
v_sub2 = _mm256_sub_pd(v_u1, v_v2);
v_sub3 = _mm256_sub_pd(v_u1, v_v3);
v_sub4 = _mm256_sub_pd(v_u1, v_v4);
NUM_MULS(4*4);
NUM_ADDS(4*4);
v_norm1 = _mm256_fmadd_pd(v_sub1, v_sub1, v_norm1);
v_norm2 = _mm256_fmadd_pd(v_sub2, v_sub2, v_norm2);
v_norm3 = _mm256_fmadd_pd(v_sub3, v_sub3, v_norm3);
v_norm4 = _mm256_fmadd_pd(v_sub4, v_sub4, v_norm4);
}
// use doubles
_mm256_store_pd(norm1, v_norm1);
_mm256_store_pd(norm2, v_norm2);
_mm256_store_pd(norm3, v_norm3);
_mm256_store_pd(norm4, v_norm4);
// sum up entries of array for each one into one double => stored back in a array
for(int j = 0; j < 4; j++) {
NUM_ADDS(4);
norms[0] += norm1[j];
norms[1] += norm2[j];
norms[2] += norm3[j];
norms[3] += norm4[j];
}
// tail handling
for (; i < dim; i++) {
NUM_ADDS(12);
NUM_MULS(4);
norms[0] += (u[i] - v[i]) * (u[i] - v[i]);
norms[1] += (u[i+dim] - v[i+dim]) * (u[i+dim] - v[i+dim]);
norms[2] += (u[i+2*dim] - v[i+2*dim]) * (u[i+2*dim] - v[i+2*dim]);
norms[3] += (u[i+3*dim] - v[i+3*dim]) * (u[i+3*dim] - v[i+3*dim]);
}
// printf("norms[0]=%lf norms[1]=%lf norms[2]=%lf norms[3]=%lf\n", norms[0], norms[1], norms[2], norms[3]);
result = _mm256_load_pd(norms);
NUM_MULS(4);
result = _mm256_mul_pd(half, result);
result = exp256_pd_fast(result);
// printf("exp = ");
// print_m256d(result);
// printf("\n");
// __m256 test = _mm256_set1_ps(1);
// test = exp256_ps(test);
// printf("exp2 = ");
// print_m256(test);
// printf("\n");
// __m256d test2 = _mm256_set1_pd(2);
// test2 = exp256_pd_test(test2);
// printf("exp3 = ");
// print_m256d(test2);
// printf("\n");
EXIT_FUNC;
return result;
}
double fast_gaussian_similarity_lowdim(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_MULS(1+1);
NUM_ADDS(3);
double inner = EXP(-0.5 * l2_norm_squared_lowdim(u, v, dim));
//EXIT_FUNC;
return inner;
}
/**
* l2-norm for low dimension = low k ( low # of clusters )
* @param u
* @param v
* @param dim
* @return
*/
double l2_norm_lowdim_base(double *u, double *v, int dim){
//ENTER_FUNC;
NUM_ADDS(2*dim);
NUM_MULS(dim);
NUM_SQRTS(1);
double norm = 0;
double temp;
for (int i = 0; i < dim; i++){
temp = u[i] - v[i];
norm += temp * temp;
}
norm = sqrt(norm);
//EXIT_FUNC;
return norm;
}
double l2_norm_squared_lowdim(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_ADDS(2*dim);
NUM_MULS(dim);
double norm = 0;
double temp;
for (int i = 0; i < dim; i++) {
temp = u[i] - v[i];
norm += temp * temp;
}
//EXIT_FUNC;
return norm;
}
/**
* l2 norm for k>8 clusters
* @param u
* @param v
* @param dim
* @return
*/
double l2_norm_base(double *u, double *v, int dim) {
//ENTER_FUNC;
double norm0, norm1, norm2, norm3, norm4, norm5, norm6, norm7;
norm0 = norm1 = norm2 = norm3 = norm4 = norm5 = norm6 = norm7 = 0;
int i;
for (i = 0; i < dim - 7; i = i+8) {
NUM_ADDS(24);
NUM_MULS(8);
norm0 += (u[i] - v[i]) * (u[i] - v[i]);
norm1 += (u[i+1] - v[i+1]) * (u[i+1] - v[i+1]);
norm2 += (u[i+2] - v[i+2]) * (u[i+2] - v[i+2]);
norm3 += (u[i+3] - v[i+3]) * (u[i+3] - v[i+3]);
norm4 += (u[i+4] - v[i+4]) * (u[i+4] - v[i+4]);
norm5 += (u[i+5] - v[i+5]) * (u[i+5] - v[i+5]);
norm6 += (u[i+6] - v[i+6]) * (u[i+6] - v[i+6]);
norm7 += (u[i+7] - v[i+7]) * (u[i+7] - v[i+7]);
}
// tail handling
double temp;
for (; i < dim; i++){
NUM_MULS(1);
NUM_ADDS(2);
temp = u[i] - v[i];
norm0 += temp * temp;
}
NUM_ADDS(7);
NUM_SQRTS(1);
// double norm = babylonian_squareRoot(norm0+norm1+norm2+norm3+norm4+norm5+norm6+norm7);
double norm = sqrt(norm0+norm1+norm2+norm3+norm4+norm5+norm6+norm7);
//EXIT_FUNC;
return norm;
}
// https://stackoverflow.com/questions/49941645/get-sum-of-values-stored-in-m256d-with-sse-avx
// NOT USED
static inline double hsum_double_avx(__m256d v) {
__m128d vlow = _mm256_castpd256_pd128(v);
__m128d vhigh = _mm256_extractf128_pd(v, 1); // high 128
vlow = _mm_add_pd(vlow, vhigh); // reduce down to 128
__m128d high64 = _mm_unpackhi_pd(vlow, vlow);
return _mm_cvtsd_f64(_mm_add_sd(vlow, high64)); // reduce to scalar
}
double l2_norm_squared_vec(double *u, double *v, int dim) {
//ENTER_FUNC;
double norm = 0;
__m256d v_u1, v_u2, v_v1, v_v2, v_sub1, v_sub2, zeros, v_norm1, v_norm2;
zeros = _mm256_setzero_pd();
v_norm1 = zeros; v_norm2 = zeros;
int i;
for (i = 0; i < dim - 7; i+=8) {
v_u1 = _mm256_loadu_pd(u + i);
v_v1 = _mm256_loadu_pd(v + i);
v_u2 = _mm256_loadu_pd(u + i + 4);
v_v2 = _mm256_loadu_pd(v + i + 4);
NUM_ADDS(16);
NUM_MULS(8);
v_sub1 = _mm256_sub_pd(v_u1, v_v1);
v_sub2 = _mm256_sub_pd(v_u2, v_v2);
v_norm1 = _mm256_fmadd_pd(v_sub1, v_sub1, v_norm1);
v_norm2 = _mm256_fmadd_pd(v_sub2, v_sub2, v_norm2);
}
NUM_ADDS(4);
v_norm1 = _mm256_add_pd(v_norm1, v_norm2);
// norm = hsum_double_avx(v_norm1);
NUM_ADDS(3);
norm = (((double *) &v_norm1)[0] + ((double *) &v_norm1)[1]) + (((double *) &v_norm1)[2] + ((double *) &v_norm1)[3]);
// for(int j = 0; j < 4; j++) { norm += norm2[j]; }
// tail handling
double temp;
for (; i < dim; i++) {
NUM_ADDS(2);
NUM_MULS(1);
temp = u[i] - v[i];
norm += temp * temp;
}
// norm = sqrt(norm);
//EXIT_FUNC;
return norm;
}
double l2_norm_vec(double *u, double *v, int dim) {
//ENTER_FUNC;
double norm = 0;
__m256d v_u1, v_u2, v_v1, v_v2, v_sub1, v_sub2, zeros, v_norm1, v_norm2;
zeros = _mm256_setzero_pd();
v_norm1 = zeros; v_norm2 = zeros;
int i;
for (i = 0; i < dim - 7; i+=8) {
v_u1 = _mm256_loadu_pd(u + i);
v_v1 = _mm256_loadu_pd(v + i);
v_u2 = _mm256_loadu_pd(u + i + 4);
v_v2 = _mm256_loadu_pd(v + i + 4);
NUM_ADDS(16);
NUM_MULS(8);
v_sub1 = _mm256_sub_pd(v_u1, v_v1);
v_sub2 = _mm256_sub_pd(v_u2, v_v2);
v_norm1 = _mm256_fmadd_pd(v_sub1, v_sub1, v_norm1);
v_norm2 = _mm256_fmadd_pd(v_sub2, v_sub2, v_norm2);
}
NUM_ADDS(4);
v_norm1 = _mm256_add_pd(v_norm1, v_norm2);
// norm = hsum_double_avx(v_norm1);
NUM_ADDS(3);
norm = (((double *) &v_norm1)[0] + ((double *) &v_norm1)[1]) + (((double *) &v_norm1)[2] + ((double *) &v_norm1)[3]);
// for(int j = 0; j < 4; j++) { norm += norm2[j]; }
// tail handling
double temp;
for (; i < dim; i++) {
NUM_ADDS(2);
NUM_MULS(1);
temp = u[i] - v[i];
norm += temp * temp;
}
NUM_SQRTS(1);
norm = sqrt(norm);
//EXIT_FUNC;
return norm;
}
// OLD -- INSTRUMENTATION OUT OF DATE
double l2_norm_vec_old(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_ADDS(3*dim);
NUM_MULS(dim);
NUM_SQRTS(1);
double norm = 0;
double norm2[4];
__m256d v_u1, v_u2, v_v1, v_v2, v_sub1, v_sub2, zeros, v_norm1, v_norm2;
zeros = _mm256_setzero_pd();
v_norm1 = zeros; v_norm2 = zeros;
int i;
for (i = 0; i < dim - 7; i+=8) {
v_u1 = _mm256_loadu_pd(u + i);
v_v1 = _mm256_loadu_pd(v + i);
v_u2 = _mm256_loadu_pd(u + i + 4);
v_v2 = _mm256_loadu_pd(v + i + 4);
v_sub1 = _mm256_sub_pd(v_u1, v_v1);
v_sub2 = _mm256_sub_pd(v_u2, v_v2);
v_norm1 = _mm256_fmadd_pd(v_sub1, v_sub1, v_norm1);
v_norm2 = _mm256_fmadd_pd(v_sub2, v_sub2, v_norm2);
}
v_norm1 = _mm256_add_pd(v_norm1, v_norm2);
_mm256_storeu_pd(norm2, v_norm1);
for(int j = 0; j < 4; j++) { norm += norm2[j]; }
// tail handling
for (; i < dim; i++) {
norm += (u[i] - v[i]) * (u[i] - v[i]);
}
norm = sqrt(norm);
//EXIT_FUNC;
return norm;
}
// NOT USED -- INSTRUMENTATION OUT OF DATE
__m256d l2_norm_4x1_vec(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_ADDS(3*dim);
NUM_MULS(dim);
NUM_SQRTS(1);
double norms[4];
double norm1[4], norm2[4], norm3[4], norm4[4];
__m256d v_v1, v_u1, v_u2, v_u3, v_u4, v_sub1, v_sub2, v_sub3, v_sub4;
__m256d v_norm1, v_norm2, v_norm3, v_norm4, zeros, result;
zeros = _mm256_setzero_pd();
v_norm1 = zeros; v_norm2 = zeros; v_norm3 = zeros; v_norm4 = zeros;
int i;
for (i = 0; i < dim - 3; i+=4) {
v_u1 = _mm256_loadu_pd(u + i);
v_u2 = _mm256_loadu_pd(u+dim + i);
v_u3 = _mm256_loadu_pd(u+2*dim + i);
v_u4 = _mm256_loadu_pd(u+3*dim + i);
v_v1 = _mm256_loadu_pd(v + i);
v_sub1 = _mm256_sub_pd(v_u1, v_v1);
v_sub2 = _mm256_sub_pd(v_u2, v_v1);
v_sub3 = _mm256_sub_pd(v_u3, v_v1);
v_sub4 = _mm256_sub_pd(v_u4, v_v1);
v_norm1 = _mm256_fmadd_pd(v_sub1, v_sub1, v_norm1);
v_norm2 = _mm256_fmadd_pd(v_sub2, v_sub2, v_norm2);
v_norm3 = _mm256_fmadd_pd(v_sub3, v_sub3, v_norm3);
v_norm4 = _mm256_fmadd_pd(v_sub4, v_sub4, v_norm4);
}
// use doubles
_mm256_storeu_pd(norm1, v_norm1);
_mm256_storeu_pd(norm2, v_norm2);
_mm256_storeu_pd(norm3, v_norm3);
_mm256_storeu_pd(norm4, v_norm4);
// sum up entries of array for each one into one double => stored back in a array
for(int j = 0; j < 4; j++) {
norms[0] += norm1[j];
norms[1] += norm2[j];
norms[2] += norm3[j];
norms[3] += norm4[j];
}
// tail handling
for (; i < dim; i++) {
norms[0] += (u[i] - v[i]) * (u[i] - v[i]);
norms[1] += (u[i+dim] - v[i+dim]) * (u[i+dim] - v[i+dim]);
norms[2] += (u[i+2*dim] - v[i+2*dim]) * (u[i+2*dim] - v[i+2*dim]);
norms[3] += (u[i+3*dim] - v[i+3*dim]) * (u[i+3*dim] - v[i+3*dim]);
}
result = _mm256_loadu_pd(norms);
result = _mm256_sqrt_pd(result);
//EXIT_FUNC;
return result;
}
double l2_norm_squared_base(double *u, double *v, int dim) {
//ENTER_FUNC;
double norm0, norm1, norm2, norm3, norm4, norm5, norm6, norm7;
norm0 = norm1 = norm2 = norm3 = norm4 = norm5 = norm6 = norm7 = 0;
int i;
for (i = 0; i < dim - 7; i = i + 8) {
NUM_ADDS(24);
NUM_MULS(8);
norm0 += (u[i] - v[i]) * (u[i] - v[i]);
norm1 += (u[i+1] - v[i+1]) * (u[i+1] - v[i+1]);
norm2 += (u[i+2] - v[i+2]) * (u[i+2] - v[i+2]);
norm3 += (u[i+3] - v[i+3]) * (u[i+3] - v[i+3]);
norm4 += (u[i+4] - v[i+4]) * (u[i+4] - v[i+4]);
norm5 += (u[i+5] - v[i+5]) * (u[i+5] - v[i+5]);
norm6 += (u[i+6] - v[i+6]) * (u[i+6] - v[i+6]);
norm7 += (u[i+7] - v[i+7]) * (u[i+7] - v[i+7]);
}
// tail handling
double temp;
for (; i < dim; i++){
NUM_ADDS(2);
NUM_MULS(1);
temp = u[i] - v[i];
norm0 += temp * temp;
}
NUM_ADDS(7);
double norm = norm0+norm1+norm2+norm3+norm4+norm5+norm6+norm7;
//EXIT_FUNC;
return norm;
}
// NOT USED -- INSTRUMENTATION OUT OF DATE
double l2_norm_squared_vec_old(double *u, double *v, int dim) {
//ENTER_FUNC;
NUM_ADDS(3*dim);
NUM_MULS(dim);
double norm = 0;
double norm2[4];
__m256d v_u1, v_u2, v_v1, v_v2, v_sub1, v_sub2, zeros, v_norm1, v_norm2;
zeros = _mm256_setzero_pd();
v_norm1 = zeros; v_norm2 = zeros;
int i;
for (i = 0; i < dim - 7; i+=8) {
v_u1 = _mm256_loadu_pd(u + i);
v_v1 = _mm256_loadu_pd(v + i);
v_u2 = _mm256_loadu_pd(u + i + 4);
v_v2 = _mm256_loadu_pd(v + i + 4);
v_sub1 = _mm256_sub_pd(v_u1, v_v1);
v_sub2 = _mm256_sub_pd(v_u2, v_v2);
v_norm1 = _mm256_fmadd_pd(v_sub1, v_sub1, v_norm1);
v_norm2 = _mm256_fmadd_pd(v_sub2, v_sub2, v_norm2);
}
v_norm1 = _mm256_add_pd(v_norm1, v_norm2);
_mm256_storeu_pd(norm2, v_norm1);
for(int j = 0; j < 4; j++) { norm += norm2[j]; }
// tail handling
for (; i < dim; i++) {
norm += (u[i] - v[i]) * (u[i] - v[i]);
}
//EXIT_FUNC;
return norm;
}
// /**
// * Generic Methods for kmeans: change name definition in return {HERE};
// *
// * @param u
// * @param v
// * @param dim
// * @return
// */
// double l2_norm(double *u, double *v, int dim) {
// return l2_norm_vec(u, v, dim);
// }
// double l2_norm_squared(double *u, double *v, int dim) {
// return l2_norm_squared_vec(u, v, dim);
// }
// double l2_norm_lowdim(double *u, double *v, int dim){
// return l2_norm_lowdim_base(u, v, dim);
// }