forked from NextIdeaTechUS/LangChain_GDrive_GPT_Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
82 lines (60 loc) · 2.42 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import GoogleDriveLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
# openai / langchain Const
RETRIEVER_K_ARG = 3
OPENA_AI_MODEL = "gpt-4-0314"
PRE_PROMPT_INSTRUCTIONS = "Use the context to answer the prompt"
PERSIST_DIRECTORY = "db"
HUGGINGFACE_MODEL = "sentence-transformers/all-mpnet-base-v2"
MODEL_KWARGS = {"device": "cuda"}
# Google Const
CLIENT_SECRET_FILE = "credentials.json"
TOKEN_FILE = 'token.json'
GOOGLE_DRIVER_FOLDER_ID = "YOUR_GOOGLE_DRIVER_FOLDER_ID_HERE"
os.environ["OPENAI_API_KEY"] ="sk-YOUR_OPEN_AI_API_KEY"
def load_documents():
loader = GoogleDriveLoader(
credentials_path=CLIENT_SECRET_FILE,
token_path=TOKEN_FILE,
folder_id=GOOGLE_DRIVER_FOLDER_ID,
recursive=False,
file_types=["sheet", "document", "pdf"],
)
return loader.load()
def split_documents(docs):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=0, separators=[" ", ",", "\n"])
return text_splitter.split_documents(docs)
def generate_embeddings():
return HuggingFaceEmbeddings(model_name=HUGGINGFACE_MODEL, model_kwargs=MODEL_KWARGS)
def create_chroma_db(texts, embeddings):
if not os.path.exists(PERSIST_DIRECTORY):
return Chroma.from_documents(texts, embeddings, persist_directory=PERSIST_DIRECTORY)
else:
return Chroma(embedding_function=embeddings, persist_directory=PERSIST_DIRECTORY)
def create_retriever(db):
return db.as_retriever(search_kwargs={"k": RETRIEVER_K_ARG})
def create_index(llm, retriever):
return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
def create_llm():
return ChatOpenAI(temperature=0, model_name=OPENA_AI_MODEL)
def main():
docs = load_documents()
texts = split_documents(docs)
embeddings = generate_embeddings()
db = create_chroma_db(texts, embeddings)
retriever = create_retriever(db)
llm = create_llm()
qa = create_index(llm, retriever)
while True:
query = input("> ")
if query.lower() == "exit":
exit()
answer = qa({"query": f"### Instructions. {PRE_PROMPT_INSTRUCTIONS} ###Prompt {query}"})
print(answer['result'])
if __name__ == "__main__":
main()