-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathgcs_eval_checkpoints.py
166 lines (157 loc) · 6.57 KB
/
gcs_eval_checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import subprocess
import time
from transformers import AutoTokenizer
# Alternate version of gcs_eval if you're working with nested checkpoint folders
# with model weights instead of model weight folders directly
# edit these 4 paths as per your setup
# GCS_MODEL_DIR: gcs path where the models are stored.
# this should be the same as GCS_MODEL_DIR in model_uploader.py
# GCS_MODEL_EVAL_DIR: gcs path where the evaluated models will be shifted to
# LOCAL_MODEL_DIR: local path where the models will be downloaded
# SQL_EVAL_DIR: local path where the sql-eval repo is cloned
GCS_MODEL_DIR = "gs://defog-finetuning/fft"
GCS_MODEL_EVAL_DIR = "gs://defog-finetuning/fft_evaluated"
LOCAL_MODEL_DIR = os.path.expanduser("/models/fft")
SQL_EVAL_DIR = os.path.expanduser("~/sql-eval")
# edit the question files, prompt files and output files as you desire.
# they should have the same length, as they will be zipped and iterated through
# in the vllm runner.
os.makedirs(LOCAL_MODEL_DIR, exist_ok=True)
os.chdir(SQL_EVAL_DIR) # for executing sql-eval commands
# edit the run configs as per your requirements
NUM_BEAMS = 1
TOKENIZER_MODEL = "meta-llama/Meta-Llama-3-8B-Instruct"
def check_and_save_tokenizer(dir: str):
if not os.path.exists(os.path.join(dir, "tokenizer_config.json")):
print(f"Saving tokenizer in {dir}")
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
tokenizer.save_pretrained(dir)
def download_evaluate():
while True:
existing_models = (
subprocess.run(["gsutil", "ls", GCS_MODEL_DIR], capture_output=True)
.stdout.decode("utf-8")
.split("\n")
)
existing_checkpoints = []
for existing_model_folder in existing_models:
results = (
subprocess.run(
["gsutil", "ls", existing_model_folder], capture_output=True
)
.stdout.decode("utf-8")
.split("\n")
)
for path in results:
if path.startswith(GCS_MODEL_DIR) and "checkpoint" in path:
existing_checkpoints.append(path)
print("Existing checkpoints:")
for ec in existing_checkpoints:
print(ec)
# sort existing checkpoints lexically
existing_checkpoints.sort()
for gcs_model_checkpoint_path in existing_checkpoints:
run_name_checkpoint = gcs_model_checkpoint_path.replace(
GCS_MODEL_DIR, ""
).strip(" /")
if not run_name_checkpoint:
print("No model found, skipping.")
continue
local_model_path = os.path.join(LOCAL_MODEL_DIR, run_name_checkpoint)
run_name = run_name_checkpoint.split("/checkpoint-", 1)[0]
print(f"Model name: {run_name_checkpoint}")
if not os.path.exists(local_model_path):
local_run_name_folder = os.path.join(LOCAL_MODEL_DIR, run_name)
os.makedirs(local_run_name_folder, exist_ok=True)
# download from gcs's checkpoint folder into a run name folder
print(
f"Downloading from {gcs_model_checkpoint_path} to {local_run_name_folder}"
)
subprocess.run(
[
"gsutil",
"-m",
"cp",
"-r",
gcs_model_checkpoint_path,
local_run_name_folder,
]
)
else:
print(f"Model folder exists: {run_name_checkpoint}")
check_and_save_tokenizer(local_model_path)
try:
# run evaluation
# python3 main.py \
# -db postgres \
# -q data/instruct_basic_postgres.csv data/instruct_advanced_postgres.csv data/questions_gen_postgres.csv \
# -o "results/${run_name_checkpoint}_beam4_basic.csv" "results/${run_name_checkpoint}_beam4_advanced.csv" "results/${run_name_checkpoint}_beam4_v1.csv" \
# -g vllm \
# -b 4 \
# -c 0 \
# -f "prompts/prompt.md" \
# -m "/models/fsdp/${run_name_checkpoint}"
question_files = [
"data/instruct_basic_postgres.csv",
"data/instruct_advanced_postgres.csv",
"data/questions_gen_postgres.csv",
]
prompt_file = "prompts/prompt.md"
output_files = [
f"results/{run_name_checkpoint}_beam{NUM_BEAMS}_basic.csv",
f"results/{run_name_checkpoint}_beam{NUM_BEAMS}_advanced.csv",
f"results/{run_name_checkpoint}_beam{NUM_BEAMS}_v1.csv",
]
os.makedirs(os.path.join("results", run_name), exist_ok=True)
subprocess.run(
[
"python3",
"main.py",
"-db",
"postgres",
"-q",
*question_files,
"-o",
*output_files,
"-g",
"vllm",
"-b",
str(NUM_BEAMS),
"-c",
"0",
"-f",
prompt_file,
"-m",
local_model_path,
"-bs",
"200",
],
check=True,
)
# make model directory in gcs
subprocess.run(
[
"gsutil",
"mkdir",
f"{GCS_MODEL_EVAL_DIR}/{run_name}",
]
)
# move the model to the evaluated directory once evaluated successfully
subprocess.run(
[
"gsutil",
"-m",
"mv",
gcs_model_checkpoint_path,
f"{GCS_MODEL_EVAL_DIR}/{run_name}",
],
check=True,
)
subprocess.run(["rm", "-rf", local_model_path], check=True)
except Exception as e:
print(f"Error in evaluation: {e}")
exit(1)
time.sleep(10)
if __name__ == "__main__":
download_evaluate()